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Hypertension is a chronic disease that has a major health problem over
the centuries due to its significant contribution to the global health burden.
It is also called high blood pressure, described by two measured quantities,
Systolic blood pressure (SBP) and diastolic blood pressure (DBP). Hence,
joint longitudinal model was used to address how the evolution of SBP is
associated with the evolution of DBP. The objective was to investigate the
joint evolution and association of SBP and DBP measurements of hyper-
tensive patients and identify the potential risk factors affecting the two end
points. In this this study 354 hypertensive patients with age greater than or
equal to 18 years, who were on treatment, and who had measured at least
three times were included. For a close examination of the separate and joint
models, first, each of the outcome was analyzed separately using the linear
mixed model. Then, a joint model was considered to study the joint evolu-
tion and identify the potential risk factors affecting the two responses. The
joint model results in model improvement in fit, and hence the preferred one,
based on AIC criteria. Based on the joint model, sex, baseline age, and place
of residence were the significant factors for the progression of blood pres-
sure, while family history and all the interaction term except age by time did
not appear significant. The result from the joint model suggested a strong
association between the evolutions and a slowly increasing evolution of the
association between SBP and DBP.
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1 Introduction

In practice, one is often confronted with situations in which multiple outcomes of similar
or disparate types, recorded simultaneously, are measured repeatedly within each sub-
ject over time. A common situation is where longitudinal measurements on a continuous
or discrete response are recorded along with a (possibly censored) time-to-event (”sur-
vival”) outcome on each subject. For example, in diabetic studies patients are measured
for biomarkers such as hemoglobin level until specific outcomes such as death from dia-
betes occur (Gebregziabher et al., 2010). Alternatively, we may also need to model two
or more correlated longitudinal processes simultaneously, with a goal of understanding
their association over time. For example, in many AIDS studies both viral load and
CD4 are measured repeatedly over time which are known to be correlated .

In general, joint modeling is required and gives more efficient inference than separate
analyses when we are interested in the association structure among the outcomes or when
we are interested in drawing joint inferences about the different outcomes (Fitzmaurice
et al., 2008; Molenberghs et al., 2005; Tsiatis and Davidian, 2004). The work described
in this paper arose from the follow-up study of hypertensive patient. Hypertension is
a chronic disease known to be a risk factor for the development of a number of disease
processes. Its progression is strongly associated with functional and structural cardiac
and vascular abnormalities that damage the heart, kidneys, brain, vasculature, and other
organs and lead to pre mature morbidity and death if not treated properly (Giles et al.,
2005). Systolic (SBP) and diastolic blood pressures (DBP) are considered important
biomarkers of hypertension progression and used to diagnoses whether a person is expe-
riencing high blood pressure or not. Modeling changes in biomarkers (SBP and DBP)
over time will help us to identify factors influencing disease progression which is vital
to improve patient’s survival and quality of life. In the hypertension follow up study
described in the next section, both SBP and DBP were measured repeatedly from each
patient and the focus is to investigate changes in the two response variable over time
as well as to detect characteristics associated with a more rapid progression. Thus, in
addition to accounting for both intra-and inter-subject variations,a modeling approach
should also account the possible correlation in the two responses to ensure valid infer-
ences.

In the statistical literature, a number of approaches to joint modeling of multiple out-
comes, where some or all of the outcomes are ascertained longitudinally, have been
proposed, such as multivariate marginal models(Molenberghs et al., 2005), conditional
models (Cox and Wermuth, 1992), shared parameter model (Tsiatis and Davidian, 2004),
and joint random effects model (Verbeke and Molenberghs, 2009).

In this paper, we use the joint random-effects model that allow more flexible corre-
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lation patterns in order to simultaneously model SBP and DBP processes (Fieuws and
Verbeke, 2004; Chakraborty et al., 2003; Molenberghs et al., 2005; Fitzmaurice et al.,
2008). In particular, we allow the models for the two outcomes to depend on separate
random effects, which are themselves correlated. The remaining part of the paper is
organized as follows. Section 2 describes the materials and methods. The basic findings
of the study are presented and discussed in Section 3. Finally, concluding remarks are
provided in Section 4.

2 Methodology

2.1 Data Source and Description

The data used for this study was obtained from Jimma university specialized Hospital
chronic follow up clinic, located 352 km Southwest of Addis Ababa, Ethiopia. All pa-
tients aged 18 years or older and had a follow up start date between September 2011
and July 2013 with at least three visits then after were eligible for this study. A total of
354 patients meet the eligibility criteria and data on patients characteristics along with
the repeated SBP and DBP were retrospectively recorded from patients’ medical follow
up card by trained health workers of the clinic.

Also, five potential explanatory variables were considered in this study. The descrip-
tions of these covariates are presented in Table 1 below.

Table 1: Covariates used in the separate and joint analysis of SBP and DBP

No. variables values/codes

1 Sex 0=Female,1=Male

2 Age Age of patients in years

3 Place of residence 0=Rural, 1=Urban

4 Family history 0=Yes, 1=No

5 Time Observation time of blood pressure

Out of the total of 354 adult hypertensive patients, 173 (48.87%) were females, 180
(50.84%) of them were living in urban area (Jimma town) and 201 (56.78%) of the pa-
tients had no family history of hypertension. Mean age at the start of follow up was
50.198 years (standard deviation: 14.036 years) and average baseline SBP and DBP was
140.904 and 89.209 per mmHG with standard deviation of 18.583 and 12.727, respec-
tively.
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The longitudinal responses, SBP and DBP, were measured at irregular time interval
with one, two or three months gap. Figure 1 shows individual profile plots of SBP and
DBP along with average profile using loess smoothing.

Figure 1: Individual profile plots of SBP and DBP along with average profile using loess
smoothing

The variability of SBP between individuals seems higher at baseline and appears to
decrease over time. Similarly, there is a between and within subjects variabilities in
DBP, both implying that the between and within subject specific differences cannot
be ignored. Further, The loess smooth in both plots suggest that the average profiles,
the SBP and DBP, have linear relationships over time which are decreasing, but with
different evolution over time.

2.2 Statistical Methods of Data Analysis

2.2.1 A model for longitudinal continuous data

Linear mixed model often used in the literature for modeling a longitudinal Gaussian
outcome and provides a general and flexible modeling framework based on a random-
effects approach (Laird and Ware, 1982; Molenberghs et al., 2005)

Suppose a sequence of the longitudinal measurements {yij , i = 1, ..., N ; j = 1, ..., ni},
where yij is the jth observation from the ith subject at times tij , were recorded.Then the
Linear mixed effects model can be specified as
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Yi(t) = µi(t) +Wi(t) + εi(t) (1)

= Xi(t)β + Zi(t)bi + εi

εi ∼ N(0,Σi)

bi ∼ N(0, G)

where Yi(t) is an ni× 1 dimensional vector of observed responses, β is a p− dimensional
vector of fixed effects, bi is a q− dimensional vector of random effects, Xi(t) is a design
matrix of size ni× p associated with fixed effects possibly time-varying covariates, Zi(t)
is a design matrix of size ni × q associated with the random effects, and εi is an ni × 1
dimensional vector of within group errors with a Gaussian distribution.

In this model, µi(t) = Xi(t)β is the mean response and Wi(t)= Zi(t)bi incorporates
random effects. The term Wi(t) can be viewed as the true individual level of SBP and
DBP trajectories after they have been adjusted for the overall mean trajectory and other
fixed effects. The design matrix , Zi, for the random effects is usually a subset of the
design matrix for fixed effects, Xi.

Let γ denote the vector of all variance and covariance parameters and let θ = (β′, γ′)′) be
a vector of all parameters in the mixed effects model for Yi (1). The classical approach
to inference is based on estimators obtained from maximizing the marginal likelihood
function (Molenberghs et al., 2005)

L(θ)=
N∏
i−1
{(2Π)−

ni
2 |Vi(γ)|−

1
2 exp(

−1

2
(Yi −Xiβ)′Vi(γ)−1(Yi −Xiβ))} (2)

with respect to θ, where Vi = ZiGZ
′
i + Σi. The maximum likelihood estimator of β is

obtained from miximizing (2) conditional on γ (i.e assuming α to be known) and given
by (Laird and Ware, 1982; Molenberghs et al., 2005)

β̂=(
N∑
i=1

XiV
−1Xi)

−1(
N∑
i=1

XiV
−1Yi) (3)

Similarly, the maximum likelihood estimate of γ is obtained by maximizing (2) with
respect to γ, after β is replaced by (3) (Molenberghs et al., 2005)

2.2.2 A joint model for two continuous longitudinal data

Suppose a sequence of the longitudinal measurements {yijk, j = 1, ..., nij , i = 1, ..., N, k =
1, ...,K} represent the jth observation, from the ith subject, for the kth response variable.
The linear mixed-effects model (1) for each response variable for subject i taken at time
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t can be specified as:

Y1i(t)=µ1i(t) +W1i(t) + ε1i(t) (4)

Y2i(t)=µ2i(t) +W2i(t) + ε2i(t)

where W1i(t)= a1i+b1i(t) and W2i(t)= a2i+b2i(t), µ1i(t) and µ2i(t) refer to the average
evolution’s, a1i and a2i refers to subject specific random intercepts, b1i(t) and b2i(t)
slopes that describe how the subject specific profiles deviate from the average profile for
the two responses, and εki(t), k = 1, 2 is error terms. Both response trajectories are tied
together through a joint distribution for the random effects, as

a1i

b1i

a2i

b2i

 ∼MVN
(
0,G

)
(5)

where the variance-covariance matrix for the random effects, G, has the following struc-
ture:

G =


σ2a1 σa1b1 σa1a2 σa1b2

σb1a1 σ2b1 σb1a2 σb2b1

σa2a1 σa2b1 σ2a2 σa2b2

σb2a1 σb1b2 σb2a2 σ2b2

 . (6)

The error components for each response, which are independent of the random effects,
can be taken to be uncorrelated (σ12 = 0) and not associated with the random effects,
such that the error components are defined as,[

ε1i

ε2i

]
∼MVN

([
0

0

]
,

[
σ21 σ12

σ21 σ22

])
(7)

Assuming σ12 =0 implies that, conditional on the random-effects, both response trajec-
tories are independent. The assumption of conditional independence could alternatively
be relaxed and the random errors could be taken to be dependent by allowing for a
nonzero covariance between the error components (σ12 6= 0).

Special Case of Variance Covariance Matrix
Special case can now be obtained by making specific assumptions for the variance co-
variance matrix G. Two such specific variance-covariance structures are described in
the following paragraphs, a complete independence structure and a shared-parameters
structure.

Complete Independence: The two response variable could be taken to be completely
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independent at any point in time, there by imposing the following structure for G :

G =


σ2a1 σa1b1 0 0

σb1a1 σ2b1 0 0

0 0 σ2a2 σa2b2

0 0 σb2a2 σ2b2

 . (8)

Within a response variable, the random intercept and slope induce within-subject cor-
relations in the repeated measures over time, while assuming independence between
subjects. Moreover, this model assumes that the two responses are completely indepen-
dent. The results for this model would be identical, in theory, to fitting two separate
random-effect models.

Shared-Parameters: Now that a complete independence structure has been consid-
ered for the G matrix one may consider the other end of the spectrum where the two
response variables could be taken to be completely dependent. In this case, the two
responses essentially ”share” the same set of random effect parameters, (intercept and
slope). When two parameters are completely dependent, the correlation between them
is equal to one. This occurs when the covariance between the parameters is equal to the
square root of the product of their respective variances. Most notations, however, define
the model with a 2×1 vector of random effects, such as:

[
ai

bi

]
∼MVN

(
0 G

)
,with G =

[
σ2a σba

σab σ2b

]
(9)

Clearly, the aforementioned structure imposes strong assumptions on the relationship
between the two response variables. It is very unlikely that the two responses would
exhibit complete dependence in the association between the random slopes and between
the random intercepts.

Association of the Evolution (AE): The answer to the question how the evolu-
tion of the SBP is associated with the evolution of DBP is typically derived from the
covariance matrix of the random effects. Indeed, the correlation between both evolutions
(AE) is given by

AE =
cov(b1, b2)√

var(b1)
√
var(b2)

=
σb1b2√
σ2b1

√
σ2b2

(10)

Evolution of the Association (EA): The joint model is also shows how the association
between the responses evolves over time .

EA =
Cov(Yi1(t), Yi2(t))√

V ar(Yi1(t))
√
V ar(Yi2(t))

=
δa1a2 + tδa1b2 + tδa2b1 + t2δb1b2 + δ12√

δa1 + 2t2δa1a2 + t2δ2b1 + δ21

√
δ2a2

+ 2t2δb2b2 + t2δ2b2 + δ22

(11)

The smaller the measurement errors of both outcomes, the closer the marginal corre-
lation at t=0 approximates the correlation between the random intercepts. Moreover,
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when t increases the marginal correlation converges to the correlation between the ran-
dom slopes. It is important to note that the covariance parameters of the random
effects (together with the variances of the error components) determine the shape of the
marginal correlation function.

3 Result and Discussion

3.1 Separate Analysis of Systolic and Diastolic Blood Pressure

We analyze the Jimma Hypertensive patients followup study data as introduced in Sec-
tion 2, where SBP as well as DBP were measured repeatedly overtime for each patient.
The two outcomes will be modeled jointly to capture association between them. But
first to come up with appropriate mean and variance structure we fit separate mixed
effects model for each outcome and we determine the components to be included in the
joint model. In many longitudinal studies it has been noted that much of the systematic
variation between subjects may be explained by covariates. Thus we consider, the can-
didate covariates listed in section 2 along with their interaction with time and we follow
backward selection to come up with a parsimonious mean structure.

3.1.1 Selection of Fixed Effects for Systolic Blood Pressure

To select the fixed effect components of the response variable, SBP and DBP, including
all covariates and interaction terms with time without considering the corresponding
different random effects were fitted below:

Let SBPij denote the jth systolic blood pressure of the ith patient at time tij , where i in-
dexes the subjects i = 1, 2, ..., 354 and j indexes the time visit for subject i, j = 1, 2, ..., ni
and ni represents the overall visits of subject i. Hence, the fixed effects model with linear
time effect for SBP measurement is given by:

SBPij = β10+β11Sexi+β12Pri+ β13Fhi+β14Ai +β15Tij + β16Sexi × Tij (12)

+β17Pri × Tij +β18Fhi × Tij+β19Ai × Tij + εij

Thus, the insignificant terms should be removed from the model starting with the most
insignificant one of which is the interaction term place of residence by time with p-value
of 0.912. The model was then refitted after removing the interaction term place of
residence by time and the AIC dropped from 16253.08 to 16251.09 indicating a better
fit. The model was fitted again and the categorical covariate family history was still
insignificant. The next step is to remove the covariate family history with the p-value of
0.902. The model was fitted again and the AIC dropped from 16251.09 to 16248.57. As
recommended by (Burnham and Anderson, 1998), we compute the AIC difference. The
pair wise AIC difference for the aforementioned models is in the range 3−4, meaning, the
complex models have less level of empirical support. By following the same procedure
the final fixed effects model for systolic blood pressure is given by:

SBPij = β10+β11Sexi+β12Pri+β14Ai +β15Tij + β16Sexi × Tij (13)
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+β19Ai × Tij + εij

Hence, in this study sex, place of residence, age, time and the interaction terms sex by
time and age by time used as fixed effects in the model for systolic blood pressure.

3.1.2 Selection of Random Effects for Systolic Blood Pressure

In order to retain or remove the random effects from the model, it is better to fit the
linear mixed effects model with different random effects. Thus, four different models
with different random effects starting from a simple linear regression model (no random
effects) have been explored. Table 2 shows summary measures: Akaki information cri-
teria (AIC), Bayesian information criteria and Log-likelihood ratio test for the models
with different random effects. An appropriate random effect to the model was selected
by using AIC value. The conclusion is consistent with the AIC and the BIC values for
which smaller value is considered as better. That is, the AIC information criterion de-
creased from 16248.57 to 15940.16, which indicates that model with intercept and slope,
was a better fitting model.

Table 2: Selection of random effects to be included in the linear mixed effects model
for SBP. Note that: L.slopes and Q.slopes are random effect for the liner time
effect and quadratic time effect respectively

No. Random Effects Included AIC BIC Loglik

1 No Random Effects 16248.57 16309.18 -8124.301

2 Random Intercepts 16008.82 16075.66 -7992.407

3 Random Intercepts and L.Slopes 15940.16 16018.14 -7956.079

4 Random Intercepts, L. and Q. Slope 15940.90 16057.83 -7949.448

Hence, the final linear mixed effects model for SBP is given by:

SBPij = β10+β11Sexi+β12Pri +β14Ai +β15Tij + β16Sexi × Tij (14)

+β19Ai × Tij + w1i(tij) + εij

where, w1i(tij)=a10+b11∗Tij . Here, w1i(tij) includes the random effects for intercept and
linear time slopes, where the b1=(a10, b11) ∼ MVN(0, G). The vector (β10, β11, ...β1p)
of fixed effects describes the average evolution of SBP and the vector (a10, b11) of random
effects describes how the profile of the ith subject deviates from the average profile.

By following the same procedure as separate analysis of SBP the final parsimonious
linear mixed effects model for DBP is given by:

DBPij = β20+β21Sexi+β22Pri+β24Ai +β25Tij + β26Sexi × Tij (15)

+β29Ai × Tij +w2i(tij) + εij
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where, w2i(tij)=a20 + b21 ∗ Tij . Here, w2i(tij) includes the random effects for intercept
and linear time slopes, where the b2=(a20, b21) ∼ N(0, G).

Table 3: Parameter estimates and standard errors for the separate LMMs of the SBP
and DBP for the final model

SBP DBP

Parameter Estimate(S.e) P-value Parameter Estimate P-value

Fixed effects

β10 128.189(2.811) 0.0000 β20 89.22(1.967) 0.0000

β11 5.121(1.539) 0.0010 β21 2.926(0.856) 0.0070

β12 3.011(1.099) 0.0062 β22 0.805(1.035) 0.4360

β14 0.144(0.054) 0.0086 β24 -0.077(0.037) 0.0390

β15 -1.744(0.308) 0.0001 β25 -1.093(0.465) 0.0191

β16 -0.799(0.248) 0.0013 β26 -0.081(0.176) 0.0380

β19 -0.011(0.009) 0.0300 β29 -0.024(0.005) 0.0001

Random effects

Var(â10) 130.09(15.124) Var(â20) 133.16(15.036)

Var(b̂11) 1.775(0.366) Var(b̂21) 2.010(0.357)

δ21 149.28(5.684) δ21 147.53(5.613)

3.2 Joint Analysis of SBP and DBP

The joint linear mixed-effects model (4) was used to fit the two response variables, DBP
and SBP, assuming an unstructured variance-covariance structure as discussed is Section
2.2.2. This model is the same as the separate model discussed in the previous section,
except the sets of random intercepts and slopes for each response are now correlated
rather than independent. This model was fitted allowing for a linear time effect for each
covariate and by considering all covariates as a fixed effect with all possible interaction
terms.

The interaction term sex by time and age by time are significant for both SBP and
DBP. Thus, the insignificant terms should be removed from the model and refitted after
removing the insignificant terms, the AIC value dropped from 30865.4 to 30694.6 indi-
cating a better fit, which is the final joint model.
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Table 4: Parameter estimates, standard errors (s.e) and 95% confidence intervals (CI)
for the joint linear mixed effects model of the SBP and DBP outcomes for the
final model.

SBP DBP

Effect Estimate(s.e) 95% CI Estimate(s.e) 95% CI

Intercept 128.46(2.801) (122.98, 134.12)* 89.391(1.965) (85.53, 93.27)*

Sex:Male 5.148(1.540) (2.165, 8.262)* 3.053(1.074) (0.941, 5.164)*

Pr:Rural 3.014(1.103) (0.444, 4.785)* 0.323(0.826) (-1.302, 1.948)

Age 0.140(0.055) (0.032, 0.248)* -0.078(0.038) (-0.153, -0.003)*

Time -1.797(0.317) (-2.424, -1.171)* -1.097(0.455) (-1.990, -0.205)*

Sex:Male×T -0.809(0.250) (-1.319, 0.294) -0.048(0.167) (-0.378, 0.285)

Age×T - 0.011(0.008) (-0.025, -0.0024)* -0.025(0.006) (-0.033, -0.012)*

All the parameters were found significant at 5 percent level of significance except the
interaction term sex by time for SBP and place of residence and the interaction term sex
by time for DBP. The variable sex, place of residence and age are identified as positively
associated with change in SBP, but time is negatively associated with SBP. Sex is the
only variable which is identified as a positive risk factor for the change in DBP, but time
and age are negatively associated with the change in DBP. The intercept 128.46 and
89.391 with standard error of 2.801 and 1.965 represent estimates of the average level
of SBP and DBP during the first follow up time, respectively. The parameter estimates
5.148 and 3.053 for SBP and DBP respectively, indicate that on average males started
with the higher SBP and DBP measures than females at baseline. The average intercept
3.014, which indicate that on average hypertensive patients living in rural area started
with the higher SBP measure than living in urban area at baseline. A parameter esti-
mate of age for both SBP and DBP indicates a one year increase in age was associated
with a normal increase of 0.140 mmHG (s.e = 0.055) in SBP and a normal decrease of
0.078 mmHG (s.e =0.038) in DBP. The parameter estimate of the interaction for age and
time is 0.014 and 0.025 for SBP and DBP, respectively, which implies that the average
rate of increase is inversely related to age. A unit increase in time was associated with
1.797 rate of decreasing on SBP and 1.097 rate of decreasing on DBP.

Accordingly, the SAS PROC MIXED for joint model also provides the estimated vari-
ance covariance matrix, and the estimated correlation matrix for random effects of both
the SBP and the DBP are shown in Table 5 and Table 6, respectively.
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Table 5: Variance-Covariance estimates for the final joint model

SBP DBP

Intercept Slope Intercept Slope

SBP Intercept 133.16 -11.5415 76.3829 6.2179

Slope -11.5415 2.0101 6.5604 0.8112

DBP Intercept 76.3829 6.5604 55.3012 -2.8417

slope 6.2179 0.8112 -2.8417 0.4827

Table 6: Estimated correlation matrix:

SBP DBP

Intercept Slope Intercept Slope

SBP Intercept 1.0000 -0.7054 0.8901 0.7756

Slope -0.7054 1.0000 0.6222 0.8236

DBP Intercept 0.8901 0.6222 1.0000 -0.5500

slope 0.7756 0.8236 -0.5500 1.0000

From the random effects estimate, it can be seen that variability is higher for SBP
(random slope = 2.0101) than DBP (random slope = 0.4827) which is inline with the rec-
ommendation adopted by the WHO and ISSHP (Davey and MacGillivray, 1988) which
states that SBP is more variable than DBP. On the other hand, we found a high corre-
lation between the random intercept for the SBP and DBP, meaning that a patient with
an initial SBP higher than average is likely to have an initial DBP which is also higher
than average (Molenberghs et al., 2005). With joint mixed-effects model, it is possible
to investigate how the evolution of DBP is associated with the evolution of SBP, the
association of the evolutions (AE). It is also possible to determine how the association
between DBP and SBP evolves over time, the evolution of the association (EA). The
AE can be determined by using equation (10) from Section 2.2.2 or by reading the cor-
relation between the two slopes directly from the estimated correlation matrix (Table
6). Here the AE between the random slope for DBP and the random slope for SBP is
0.8236. Thus, the larger positive value suggests a positive strong association between
the evolution of systolic and diastolic blood pressures.

The EA can be determined, and then visualized, using the marginal correlation be-
tween DBP and SBP, equation (11) from Section 2.2.2. To visualize this, the implied
correlation has been calculated and plotted over time using the marginal correlation be-
tween both response variables in Figure 2. Notice that its weakest correlation is 0.0075,
at baseline, and this association slightly increases over time.
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Figure 2: Associations of the Evolution

3.3 Comparison of Separate and Joint Model

Technically, the separate models were fitted for the two outcomes together anyway, but
assuming that ρ= 0 (fit as a joint model with appropriate covariance terms equal to
zero), which is entirely equivalent to fitting the models separately, using SAS PROC
NLMIXED for both separate and joint model provides the following results.

In general, both models provide similar results for the fixed effect parameter estimates
and their associated standard error. However, the etimates for the random effect com-
ponents obtained from the separte model is slightly lower than for the joint model while
the estimates for the residual variance is higher than the joint model. SBP and DBP
show a strong direct relationship as evidenced by the correlation of the random effects
in the joint model.With regards to AIC and -2log-likelihood, the joint model fitted the
data better than the separate model.

4 Conclusion

In this study two methods were considered for fitting two response variables measured
longitudinally. Based on separate analysis; the evolution of SBP and DBP measures
were significantly differ with respect to time, sex, baseline age and time interaction with
sex and age of hypertensive patients. Moreover, on average SBP and DBP measure
decreases in a linear pattern over time after patients initiated anti- hypertensive drugs.

In joint analysis sex, baseline age and place of residence were identified as positive
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risk factors for the change in SBP, but time is negatively associated with SBP. Sex is
the only variable which is identified as a positive risk factor for the change in DBP, but
time and baseline age are negatively associated with the change in DBP. The presence
of family history did not have any association on the change of both SBP and DBP.

The result shows, the joint model has a very smaller AIC value which indicates that
it fits the data better than the separate model. The joint model further allows us to an-
swer questions, such as, how the association between the two outcomes evolves overtime
and how outcome specific evolution are related to each other, which can not be answered
by using the separate modeling approach.
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Table 7: Parameter estimates and standard errorsfor separate and joint model

Separate Model Joint Model

Effect Estimate(s.e) 95% CI Estimate(s.e) 95% CI

SBP

Fixed Effects

Intercept 128.19(2.814) (122.66, 133.72) 128.46(2.801) (122.89, 134.02)

Sex:M 5.122(1.540) (2.093, 8.151) 5.149(1.539) (2.102, 8.197)

Pr:Rural 3.012(1.105) (0.837, 5.187) 3.0124(1.075) (0.312, 5.713

Age 3.012(1.105) (0.837, 5.187) 3.0124(1.075) (0.312, 5.713)

Time -1.777(0.305) (-2.379, -1.174) -1.797(0.317) (-2.424, -1.171)

Sex:M×T -0.799(0.259) (-1.292,-0.308) -0.809(0.257) (-1.319, 0.293)

Age×T -0.011(0.009) (-0.029,-0.007) -0.014(0.008) (-0.028,-0.007)

Random Effects

Var(â10) 130.09(15.124) (104.88, 165.68) 133.16(15.036) (107.56, 169.18)

Var(b̂11) 1.775(0.366) (1.230, 2.786) 2.010(0.357) (1.401, 3.126)

δ21 149.28(5.684) (138.74,161.08) 147.53(5.613) (137.12, 159.19)

DBP

Fixed Effects

Intercept 89.349(1.956) (85.502, 93.197) 89.351(1.967) (85.482, 93.219)

Sex:M 2.842(1.068) (0.740, 4.944) 2.858(0.853) (1.1840, 4.533)

Pr:Rural 0.463(0.834) (-1.177, 2.103) 0.423(0.828) (-1.177, 2.083)

Age 0.463(0.834) (-1.177, 2.103) 0.423(0.828) (-1.177, 2.083)

Time -1.093(0.468) (-2.016, -0.170) -1.097(0.475) (-1.990,-0.204)

Sex:M×T -0.079(0.177) (-0.296, -0.041) -0.048(0.167) (-0.378, 0.285)

Age×T -0.024(0.006) (-0.036, -0.013) -0.025(0.006) (-0.037,-0.013)

Random Effects

Var(â20) 53.698(7.498 ) (41.705, 71.755) 55.301(7.455) (59.594,93.171)

Var(b̂21) 0.359(0.150) (0.182, 1.013) 0.483(0.142) (0.267, 1.127

δ22 95.179(3.625) (88.456, 102.70) 93.936(3.575) ( 9.026, 9.694)

ρ . . 0.824(0.199) (0.421, 1.202)

-2log-likelihood 30820.0 30670.6

AIC 30836.0 30694.6

The joint model also suggested a strong association between the evolutions and a slowly
increasing evolution of the association between systolic and diastolic blood pressure .
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Appendix

SAS Code for selected Mixed-Effects Models

A. PROC MIXED Codes

/***Separate Models***/
proc mixed data= joint covtest;

class name sex pr id;

model resp =sex pr age time time*sex pr*time time*age /solution cl

ddfm= kr;

random int time/ sub=id type = un group = name g gcorr;

repeated name/type=vc subject=id;

run;

/***Joint Model****/
proc mixed data= joint covtest;

class name sex pr id;

model resp = sex pr age time time*sex pr*time time*age /solution cl

ddfm= kr;

random name name*time / sub=id type=un g gcorr;

repeated name/type=vc group=name subject=id;

run;

B. PROC NLMIXED Codes

proc nlmixed data=joint qpoints=10;

parms beta10= 128.18903 beta11= 5.1861 beta12= 3.01194 beta14=0.14457

beta15=-1.09317 beta16=-0.79991 beta19= 0.01092 beta20= 89.218

beta21= 2.8585 beta22=0.6847 beta24= -0.07463 beta25=-1.6091 beta27=-0.1290

beta29= 0.02323 sigma1= 12.4730 sigma2= 9.8945 tau1=11.405828 rho=0.1

tau2= 1.332393 tau3= 6.2079 tau4=0.6012819;

if name = "1" then do;

mean= beta10 + beta11*sex+beta12*pr+beta14*age+beta15*time+beta16*time*sex

+beta19*time*age + a10+b11*time;

dens = -0.5*log(3.14159265358) - log(sigma1)-0.5*(resp-mean)**2/(sigma1**2);

ll = dens;

end;

if name= "2" then do; mean = beta20 + beta21*sex+beta22*pr+beta24*

age+beta25*time

+beta27*time*pr+beta29*time*age + a20+b21*time;

dens = -0.5*log(3.14159265358) - log(sigma2)-0.5*(resp-mean)

*2/(sigma2**2);

ll = dens;

end;

model resp∼general(ll);

/***Separate Model****/

random a10 b11 a20 b21 ∼normal([0,0,0,0],[tau1**2,0,tau2**2,0,0,
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tau3**2,0,0,0,tau4**2]) subject=id;

/***Joint Model****/

random a10 b11 a20 b21 ∼normal([0,0,0,0],[tau1**2,rho*tau1*tau2,tau2**2,
rho*tau1*tau3,rho*tau2*tau3, tau3**2,rho*tau1*tau4,rho*tau2*tau4,

rho*tau3*tau4,tau4**2]) subject=id;

run;


