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The present paper introduces a new count data model which is obtained
by compounding negative binomial distribution with Kumaraswamy distri-
bution. The proposed model has several properties such as it can be nested
to different compound distributions on specific parameter setting. Similarity
of the proposed model with existing compound distribution has been shown
by means of reparameterization. Factorial moments and parameter estima-
tion through maximum likelihood estimation and method of moment have
been disused. The potentiality of the proposed model has been tested by
chi-square goodness of fit test by modeling the real world count data sets
from genetics and ecology.

keywords: Negative binomial distribution, Kumaraswamy distribution, com-
pound distribution, factorial moment, count data.

1 Introduction

From the last few decades researchers are busy to obtain new probability distributions
by using different techniques such as compounding, T-X family, transmutation etc. but
compounding of probability distribution has received maximum attention which is an in-
novative and sound technique to obtain new probability distributions. The compounding
of probability distributions enables us to obtain both discrete as well as continuous dis-
tribution. Compound distribution arises when all or some parameters of a distribution
known as parent distribution vary according to some probability distribution called the
compounding distribution for instance negative binomial distribution can be obtained
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from Poisson distribution when its parameter follows gamma distribution. If the parent
distribution is discrete then resultant compound distribution will also be discrete and if
the parent distribution is continuous then resultant compound distribution will also be
continuous i,e. the support of the original (parent) distribution determines the support
of compound distributions.

In several research papers it has been found that compound distributions are very
flexible and can be used efficiently to model different types of data sets. With this in
mind many compound probability distributions have been constructed. Sankaran (1970)
obtained a compound of Poisson distribution with that of Lindley distribution, Zamani
and Ismail (2010) constructed a new compound distribution by compounding negative
binomial with one parameter Lindley distribution that provides good fit for count data
where the probability at zero has a large value. The researchers like Adil Rashid and
Jan obtained several compound distributions for instance, Rashid and Jan (2013, 2014b)
obtained a compound of zero truncated generalized negative binomial distribution with
generalized beta distribution, they obtained compound of a Geeta distribution with
generalized beta distribution. Rashid and Jan (2014a) explored a compound of Consul
distribution with generalized beta distribution that embodies several compound distri-
butions as sub cases. Based on the same compounding mechanism Rashid et al. (2014)
constructed a mixture of generalized negative binomial distribution with that of gener-
alized exponential distribution which contains several compound distributions as its sub
cases and proved that this particular model is better in comparison to others when it
comes to fit observed count data set. Most recentlyRashid and Jan (2016) constructed
a new lifetime distribution with real life application in environmental sciences

In this paper we propose a new count data model by compounding negative binomial
distribution (NBD) with Kumaraswamy distribution (KSD) and some similarities of the
proposed model will be shown with some already existing compound distribution.

2 Materials and Methods

A random variableis X said to have a negative binomial distribution (NBD) it its p.m.f
is given by

f1(x; r, p) =

(
x+ r − 1

x

)
prqx;x = 0, 1, 2... (1)

where r > 0 and 0 < p < 1 are its parameters. The factorial moment of the NBD
random variable X

µ[k] =
Γ(r + k)

Γ(r)

( q
k

)k
for k = 1, 2, ... (2)

E(X) =
rq

p
and V (X) =

rq

p2



Electronic Journal of Applied Statistical Analysis 215

A random variable X is said to have a Kumaraswamy distribution (KSD) if its pdf is
given by

f2(X;α, β) = αβxα−1 (1− xα)β−1 , 0 < x < 1 (3)

where α, β > 0 are shape parameters. The raw moments of Kumaraswamy distribution
are given by

E(Xr) =

∫ 1

0
xrf2(X;α, β)dx

=
Γ(β + 1)Γ

(
1 + r

a

)
Γ
(
1 + β + r

α

) (4)

Kumaraswamy distribution is a two parameter continuous probability distribution that
has obtained by Kumaraswamy (1980) but unfortunately this distribution is not very
popular among statisticians because researchers have not analyzed and investigated it
systematically in much detail. Kumaraswmy distribution is similar to the beta distribu-
tion but unlike beta distribution it has a closed form of cumulative distribution function
which makes it very simple to deal with. For more detailed properties one can see
references Jones (2009)

Usually the parameters r and p in NBD are fixed constants but here we have considered
a problem in which the probability parameter p is itself a random variable following KSD
with p.d.f (3).

3 Definition of proposed model

If X|p ∼ NBD(r, p) where p is itself a random variable following Kumaraswamy dis-
tribution KSD(α, β) then determining the distribution that results from marginalizing
over p will be known as a compound of negative binomial distribution with that of Ku-
maraswamy distribution which is denoted by NBKSD(r, α, β). It may be noted that
proposed model will be a discrete since the parent distribution NBD is discrete.
Theorem 3.1: The probability mass function of a compound of NBD(r, p) with

KSD(α, β) is given by

fNBKSD(X; r, α, β) =

(
x+ r − 1

x

) x∑
j=0

(
x

j

)
(−1)j

Γ(β + 1)Γ
(
r+j
α + 1

)
Γ
(
β + r+j

α + 1
)

where x = 0, 1, 2, ..., r, α, β > 0
Proof: Using the definition (3), the p.m.f of a compound of NBD(r, p)with KSD(α, β)

can be obtained as

fNBKSD(X; r, α, β) =

∫ 1

0
f1(x|P )f2(p)dp

= αβ

(
x+ r − 1

x

) x∑
j=0

(
x

j

)
(−1)j

∫ 1

0
pr+j+α−1(1− pα)β−1dp



216 Rashid, Ahmad, Jan

substituting 1− pα = z, we get

fNBKSD(X; r, α, β) = β

(
x+ r − 1

x

) x∑
j=0

(
x

j

)
(−1)j

∫ 1

0
zβ−1(1− z)

r+j
α dz

= β

(
x+ r − 1

x

) x∑
j=0

(
x

j

)
(−1)jB

(
β,
r + j

α
+ 1

)

=

(
x+ r − 1

x

) x∑
j=0

(
x

j

)
(−1)j

Γ(β + 1)Γ
(
r+j
α + 1

)
Γ
(
β + r+j

α + 1
) (5)

where x = 0, 1, 2, ..., r, α, β > 0 . From here a random Xvariable following a compound
of NBD with KSD will be symbolized by NBKSD(r, α, β)

4 Reparameterization technique

There are very few continuous probability distributions in statistics whose support lies
between 0 and 1 so in order to ascribe a suitable distribution to a probability parameter
p we have a limited choice, to remove this limitation researchers try to reparameterize
the probability parameter by equating p to e−λ where λ > 0 is a random variable. So
instead of ascribing a suitable probability distribution to parameter researchers ascribe a
suitable distribution to the parameter λ by treating it as a random variable with support
λ > 0 and there are numerous probability distributions in statistics whose support lies
(0,∞)

In this section a similarity will be shown between a proposed model and a model which
is obtained by compounding negative binomial distribution with generalized exponential
distribution through reparameterization technique.
Proposition 4.1: The probability function of the proposed model gets coincide with

the compound of NBD with GED obtained through reparameterization.
Proof : If (X|λ) ∼ NBD(r, p = e−λ where λ is itself a random variable following a

generalized exponential distribution (GED) with probability density function

f3(λ;β, α) = βα(1− eαλ)β−1e−αλ for α, β, λ > 0 (6)

then determining the distribution that results from marginalizing over λ will give us a
compound of NBD with GED

fNBGED(x;β, α) =

∫ ∞
0

f1(x|λ)f3(λ, β, α)dλ

=

(
x+ r − 1

x

) x∑
j=0

(
x

j

)
(−1)j

∫ ∞
0

e−λ(r+j)f3(λ, β, α)dλ

=

(
x+ r − 1

x

) x∑
j=0

(
x

j

)
(−1)j

Γ(β + 1)Γ
(
r+j
α + 1

)
Γ
(
β + r+j

α + 1
) (7)
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where x = 0, 1, 2, ..., r, α, β > 0. Interestingly, this gives rise to the same probability
function as the probability function (5) of the proposed model. The probability function
defined in (7) was obtained by Aryuyuen and Bodhisuwan (2013) hence our model can
be treated as a simple and easy alternative since it has been obtained without reparam-
eterization.

5 Nested distributions

In this particular section we show that the proposed model can be nested to different
models under specific parameter setting.
Proposition 5.1: If X ∼ NBKSD(r, α, β) then by setting r = 1 we get a compound

of geometric distribution with Kummarswamy distribution.

Proof : For r = 1 in (1) NBD reduces to geometric distribution (GD) hence a com-
pound of GD with KSD is followed from (5) by simply substituting r = 1 in it.

fGKSD(X;α, β) =
x∑
j=0

(
x

j

)
(−1)j

Γ(β + 1)Γ
(
j+1
α + 1

)
Γ
(
β + j+1

α + 1
) for x = 0, 1, 2, ..., r, α, β > 0

which is the probability mass function of a compound of GD with KSD.

Proposition 5.2: If X ∼ NBKSD(r, α, β) then by setting α = β = 1 we obtain a
compound of NBD distribution with uniform distribution.
Proof : For α = β = 1 in KSD reduces to uniform (0,1) distribution therefore a

compound NBD with uniform distribution is followed from (5) by simply putting α =
β = 1 in it.

fNBUD(X;α, β) =

(
x+ r − 1

x

) x∑
j=0

(
x

j

)
(−1)j

r + j + 1
for x = 0, 1, 2, ..., r, α, β > 0

which is probability mass function of a compound of NBD with uniform distribution.
Proposition 5.3: If X ∼ NBKSD(r, α, β) then by setting α = β = 1 and we obtain

a compound of geometric distribution with uniform distribution.
Proof : For r = 1 in (1), NBD reduces to geometric distribution and for α = β = 1 Ku-

maraswamy distribution reduces to U(0,1) distribution hence a compound of geometric
distribution with uniform distribution can be obtained from (5) by simply substituting
r = 1 and α = β = 1 in it.

fGUD(X) =
x∑
j=0

(
x

j

)
(−1)j

j + 2
for x = 0, 1, 2, ...

which is the probability function of GD with U(0,1) distribution.
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6 Mean and variance of the proposed model

In order to obtain the lth moment of the proposed model NBKSD(r, α, β) about origin
we need to apply the well-known results of probability theory viz

(i) Conditional expectation identity E(X l) = Ep(X
l|P ) and

(ii) Conditional variance identity V (X) = Ep(V ar(X|P )) + V arp(E(X|P ))

Since X|P ∼ NBD(r, p) where p is itself a random variable following KSD(α, β),
therefore we have

E(X l) = Ep(X
l|P )

= rEp

(
1− p
p

)l
= r

l∑
j=0

(
l

j

)
(−1)j

1∫
0

pj−1f2(p;α, β)dp

using the arguement (4) we get

E(X l) = r
l∑

j=0

(
l

j

)
(−1)j

Γ(β + 1)Γ
(
j−l
α + 1

)
Γ
(
β + j−l

α + 1
)

For l = 1, we get the mean of NBKSD

E(X) = r

(
Γ(β + 1)Γ(1− 1

α)

Γ(1 + β − 1
α)

− 1

)
= m1

similarly we can find variance of NBKSD using conditional variance identity (ii)

V (X) = Ep

(
r(1− p)
p2

)
+ V arp

(
r(1− p)

p

)

=
(r + r2)Γ(β + 1)Γ

(
1− 2

α

)
Γ
(
β − 2

α + 1
) −

rΓ(β + 1)Γ
(

1− 1
β

)
Γ
(
β − 1

α + 1
)

1 +
rΓ(β + 1)Γ

(
1− 1

β

)
Γ
(
β − 1

α + 1
)


7 Factorial moment of the proposed model

In this section we shall obtain factorial moment of the proposed model which is very help-
ful to study some of the important features such as mean, variance, standard deviation
and so on.
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Theorem 7.1 The factorial moment of order k of the proposed model is given by

µ[k](X) =
Γ(r + k)

Γ(r)

k∑
j=0

(
k

j

)
(−1)j

Γ(β + 1)Γ
(
j−k
α + 1

)
Γ
(
β + j−k

α + 1
)

where X = 0, 1, 2, ..., r, αβ > 0

Proof The factorial moment of order k of NBD is

mk(X|p) =
Γ(r + k)

Γ(r)

(1− p)k

pk

since p itself is a random variable following KSD, therefore one obtains factorial mo-
ment of the proposed model by using the definition

µ[k](X) = Ep(mk(X|p))

=
Γ(r + k)

Γ(r)
Ep

(
1− p
p

)k
=

Γ(r + k)

Γ(r)
αβ

k∑
j=0

(−1)j
(
k

j

) 1∫
0

pα+j−k−1(1− pα)β−1dp

substituting 1− pα = z, we get

=
Γ(r + k)

Γ(r)
β

k∑
j=0

(−1)j
(
k

j

) 1∫
0

zβ−1(1− z)
j−k
α dz

=
Γ(r + k)

Γ(r)
β

k∑
j=0

(−1)j
(
k

j

)
B

(
β,
j − k
α

+ 1

)

=
Γ(r + k)

Γ(r)

k∑
j=0

(−1)j
(
k

j

)Γ(β + 1)Γ
(
j−k
α + 1

)
Γ
(
β + j−k

α + 1
) (8)

where x = 0, 1, 2, ..., r, α, β > 0. For k = 1, we mean of NBKSD (r, α, β)

µ[1](X) = r

(
Γ(β + 1)Γ(1− 1

α)

Γ(1 + β − 1
α)

− 1

)
= m1

µ[2](X) = r(r + 1)

(
Γ(β + 1)Γ

(
1− 2

α

)
Γ
(
β − 2

α + 2
) − 2

Γ(β + 1)Γ
(
1− 1

α

)
Γ
(
β − 1

α + 2
) +

1

β + 1

)
= ν2

E(X2) = µ[2](X) + µ[1](X) = ν2 +m1 = m2
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similarly we can find third moment E(X3)

V (X) = m2 −m2
1 =

(r + r2)Γ(β + 1)Γ
(
1− 2

α

)
Γ
(
β − 2

α + 1
) −

rΓ(β + 1)Γ
(

1− 1
β

)
Γ
(
β − 1

α + 1
)

1 +
rΓ(β + 1)Γ

(
1− 1

β

)
Γ
(
β − 1

α + 1
)


Standard deviation of NBKSD (r, α, β) model is SD =

√
V (X)

Corollary 7.2: The factorial moment of order k of a compound of NBD with uniform
distribution is given by

µ[k](X) =
Γ(r + k)

Γ(r)

k∑
j=0

(−1)j

( (
k
j

)
j − k + 2

)

where x = 0, 1, 2..., r, α, β > 0
Proof: Since KSD (α, β) reduces to Uniform distribution (0, 1) for α = β = 1, therefore
factorial moment of order k of a compound of NBD with uniform distribution (0, 1) can
be obtained from (8) by simply substituting α = β = 1 in it.

µ[k](X) =
Γ(r + k)

Γ(r)

k∑
j=0

(−1)j

( (
k
j

)
j − k + 2

)

Corollary 7.3: The factorial moment of a compound of GD with KSD is given by

µ[k](X) = k
k∑
j=0

(−1)j
(
k

j

)Γ(β + 1)Γ
(
j−k
α + 1

)
Γ
(
β + j−k

α + 1
)

where x = 0, 1, 2..., r, α, β > 0
Proof:For r = 1 NBD reduces to GD and a factorial moment of order k of a compound
of geometric distribution with KSD is obtained from (8) by putting r = 1 in it.

µ[k](X) = k
k∑
j=0

(−1)j
(
k

j

)Γ(β + 1)Γ
(
j−k
α + 1

)
Γ
(
β + j−k

α + 1
)

Corollary 7.4: The factorial moment of a compound of GD with uniform distribution
is given by

µ[k](X) = k

k∑
j=0

(−1)j

( (
k
j

)
j − k + 2

)

where x = 0, 1, 2...,
Prof: Substituting r = 1 and α = β = 1 in (8) we get the result
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8 Parameter estimation

In this section the estimation of parameters of NBKSD (r, α, β) model will be discussed
through method of moments and maximum likelihood estimation.

8.1 Method of moments

In order estimate three unknown parameters of NBKSD (r, α, β) model by the method
of moments we need to equate first three sample moments with their corresponding
population moments.

m1 = γ1; m2 = γ2 and m3 = γ3

where γi = 1
n

n∑
i=1

xi is the ith sample moment and is the ith corresponding population

moment and the solution for r, α and β and may be obtained by solving above equations
simultaneously.

8.2 Maximum likelihood estimation

The estimation of parameters of NBKSD (r, α, β) model via maximum likelihood esti-
mation method requires the log likelihood function NBKSD (r, α, β) of

£(X; r, α, β) = logL(X; r, α, β) =

n∑
i=1

log

(
xi + r − 1

xi

)
+ βn

+

n∑
i=1

log

 x∑
j=0

(
x

j

)
(−1)jB

(
β,
j + r

α
+ 1

) (9)

The maximum likelihood estimate of Θ = (r, α, β) can be obtained by differentiating (9)
with respect unknown parameters r, α and β respectively and then equating them to
zero.

∂

∂r
£(X; r, α, β) =

n∑
i=1

ψ(xi + r)− nψ(r) +

n∑
i=1


xi∑
j=0

(
x
j

)
(−1)j ∂∂r

(
Γ(1+ r+j

α )
Γ(β+ r+j

α
+1)

)
xi∑
j=0

(
x
j

)
(−1)j

Γ(1+ r+j
α )

Γ(β+ r+j
α

+1)



∂

∂α
£(X; r, α, β) =

n∑
i=1


xi∑
j=0

(
x
j

)
(−1)j ∂∂α

(
Γ(1+ r+j

α )
Γ(β+ r+j

α
+1)

)
xi∑
j=0

(
x
j

)
(−1)j

Γ(1+ r+j
α )

Γ(β+ r+j
α

+1)


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∂

∂β
£(X; r, α, β) =

n∑
i=1


xi∑
j=0

(
x
j

)
(−1)j ∂∂β

(
Γ(1+ r+j

α )Γ(β+1)

Γ(β+ r+j
α

+1)

)
xi∑
j=0

(
x
j

)
(−1)j

Γ(1+ r+j
α )Γ(β+1)

Γ(β+ r+j
α

+1)


These three derivative equations cannot be solved analytically, therefore r̂, α̂, and β̂
will be obtained by maximizing the log likelihood function numerically using Newton-
Raphson method which is a powerful technique for solving equations iteratively and
numerically.

9 Applications of the proposed NBKSD model

Classical Poisson distribution plays an important role in modeling count data processes
but it requires a strong condition of independent successive events which may not be
the characteristic of the count data under consideration such as a data given in table
(1-3). Furthermore the equality of mean and variance of the observed counts is hardly
satisfied in practice, negative binomial distribution can be used in such cases but negative
binomial distribution is better for over dispersed count data that are not necessarily
heavy tailed in such situations compound distribution models serves efficiently well.

9.1 Application in Genetics

Genetics is the science which deals with the mechanisms responsible for similarities and
differences among closely related species. The term genetic is derived from the Greek
word genesis meaning grow into or to become. So, genetic is the study of heredity and
hereditary variations it is the study of transmission of body features that is similarities
and difference, from parents to offsprings and the laws related to this transmission, any
difference between individual organisms or groups of organisms of any species, caused
either by genetic difference or by the effect of environmental factors, is called variation.
Variation can be shown in physical appearance, metabolism, behavior, learning and
mental ability, and other obvious characters. In this section the potentiality of proposed
model will be justified by fitting it to the reported genetics count data sets of Catcheside
et al.

9.2 Application in ecology

The relationship between organisms and their environment can be studied through ecol-
ogy, a branch of biology. Many models have been used to fit ecological data, in this
particular section an attempt has been made to fit ecological count data on haemocy-
tometer yeast cell counts per square, on European red mites on apple leaves by proposed
NBKSD model.
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Table 1: Distribution of number of Chromatid aberrations (0.2 g chinon 1, 24 hours)

Number of abberations Observer frequency PD NBD NBKSD

0 268 231.5 279.1 269.8

1 87 126.1 71.1 82.5

2 26 34.7 27.5 27.8

3 9 6.3 11.8 10.6

4 4 0.8 5.3 4.5

5 2 0.1 2.5 2.1

6 1 0.1 1.1 1.6

7+ 3 0.1 0.5 0.5

Total 400 400 400 400

Parameter estimate(s) θ̂ = 0.545
r̂ = 0.49
p̂ = 0.48

r̂ = 1.74
α̂ = 5.94

β̂ = 2.0

Chi-square estimate 38.20 4.78 0.77

DF 2 2 1

P value 0.00 0.09 0.37

Table 2: Mammalian cytogenetic dosimetry lesions in rabbit lymphoblast induced by
streptonigrin (NSC-45383), Exposure -60 g/kg

Class/Exposure( g/kg) Observer frequency PD NBD NBKSD

0 413 374.0 407.6 411.3

1 124 177.4 127.6 129.4

2 42 42.1 42.9 39.3

3 15 6.6 14.7 12.9

4 5 0.8 5.1 4.6

5 0 0.1 1.8 1.8

6 2 0.0 0.6 0.7

Total 601 601 601 601

Parameter estimate(s) θ̂ = 0.47
r̂ = 0.87
p̂ = 0.64

r̂ = 2.11
α̂ = 9.32

β̂ = 2.92

Chi-square estimate 48.16 0.23 0.73

DF 2 2 1

P value 0.000 0.89 0.39
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Table 3: Mammalian cytogenetic dosimetry lesions in rabbit lymphoblast induced by
streptonigrin (NSC-45383) Exposure -70 g/kg

Class/Exposure( g/kg) Observer frequency PD NBD NBKSD

0 200 172.5 205.5 199.3

1 57 95.4 60.8 62.4

2 30 26.4 21.1 22.8

3 7 4.9 7.7 8.9

4 4 0.7 2.8 3.6

5 0 0.1 1.0 1.5

6 2 0.0 0.4 0.6

Total 300 300 300 300

Parameter estimate(s) θ̂ = 0.55
r̂ = 0.74
p̂ = 0.60

r̂ = 16.63
α̂ = 26.71

β̂ = 0.79

Chi-square estimate 29.6 4.24 3.15

DF 2 1 1

P value 0.001 0.039 0.075

Table 4: Mammalian cytogenetic dosimetry lesions in rabbit lymphoblast induced by
streptonigrin

Number of red mites per leaf Observer frequency PD NBD NBKSD

0 38 25.3 35.0 36.3

1 17 29.1 21.8 20.4

2 10 16.7 11.9 10.8

3 9 6.4 6.5 5.7

4 3 1.8 2.8 3.04

5 2 0.4 1.2 1.62

6 1 0.2 0.5 0.87

7+ 0 0.1 0.2 0.47

Total 80 80 80 80

Parameter estimate(s) θ̂ = 1.15
r̂ = 1.35
p̂ = 0.54

r̂ = 34.61
α̂ = 33.45

β̂ = 1.16

Chi-square estimate 18.27 2.90 2.55

DF 2 1 1

P value 0.001 0.08 0.10
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Figure 1: Graphs of proposed NBKSD model
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Figure 2: Graphs of fitted PD, NBD and NBKSD to data sets given in table 1:4
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