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Normalization of gene expression data refers the process of minimizing
non-biological variation in measured probe intensity levels so that biological
differences in gene expression can be appropriately detected. Several linear
normalization within arrays approaches have already been proposed. Re-
cently, use of non-linear methods has been gained quite attention. In this
study, our objective is to formulate non-linear normalization methods using
support vector regression (SVR) and support vector machine quantile re-
gression (SVMQR) approaches more easier way and, assess the consistency
of these methods with respect to other standard ones for further application
in gene expression data. After implementation, the performances of SVR
and SVMQR have been compared with respect to other standard normal-
ization methods namely, locally weighted scatter plot smoothing and kernel
regression. The results indicate that the normalized data based on proposed
methods are capable of producing minimum variances within replicate groups
and, also able to detect truly expressible significant genes compared to above
mentioned other normalized data.

keywords: support vector machine quantile regression, support vector re-
gression, normalization methods, microarray, intensity level.

1 Introduction

Gene expression data is often contaminated with large noise (or, high variability) and,
vary from one replicate to the other. This is mainly due to non-biological variations
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such as: small differences in mRNA quantities and fluctuations, array quality, dye bias,
localization of the probe sequences on the microarray, guanine-cytosine (GC)-content
of the probe sequences, varying sensitivity in different detection ranges due to specific
feature of particular microarray technologies and so on (Stekel, 2003). Probe intensity
level of such data is expressed as a sum of true biological variation and several con-
founding factors, resulting due to non-biological variations. Normalization is a process
of adjusting or, minimizing such non-biological variations so that biological differences of
actual gene expression can be undoubtedly detected. In simple words, biological varia-
tion generated from a biological process is of interest, but non-biological variation should
be discarded (Workman et al., 2002). Normalized data is usually achieved by perform-
ing normalization between or, within arrays of expression data. Normalization between
arrays is a process in which, intensity levels are adjusted relative to the expression of
one or, more reference genes/ probes whose levels are assumed to be constant between
samples. Further, these intensities (or, log-ratios) have similar distributions across a
series of arrays. In contrast, intensity levels are adjusted with respect to the median so
that all arrays have the same median intensities (or, log-ratios), are known as within
array normalization. As later one is more vital, we have restricted our study to within
arrays normalization.

In last decades, several normalization methods (for between and/ or, within microar-
rays) have already been proposed, namely hybridization intensity ratios, median absolute
deviation, percentile, variance stabilization, global, scale, intensity-dependent, compos-
ite and linear methods (Taniguchi et al., 2001; Huber et al., 2002; Smyth and Speed,
2003; Stekel, 2003; Yang and Speed, 2003). Interestingly, these are applicable to both
the situations (between and/ or, within arrays) and, most of them have been formulated
to normalize two channel gene expression data. However, these methods may also be
applied to single channel expression data, in similar manner. Here, we have only consid-
ered two channel based data. Recently, use of non-linear methods, which are assumed
to be superior to above ones, have gained popularity (Workman et al., 2002; Park et al.,
2003; Wang et al., 2004). This is because of their capabilities to provide more accurate
results. Some of them are implemented using locally weighted scatter plot smoothing
(LOWESS), splines, wavelets and kernel regression (KERNEL) approaches. A recent
promising technique, support vector machine (SVM) (Vapnik, 1995) approach can also
be used to resolve this issue. Designing an efficient and competent non-linear method
using this approach has already been suggested by several authors (Fujita et al., 2006;
Sohn et al., 2008). In this study, our objective is to formulate normalization methods
using SVM approaches more easier way and, assess the consistency of these methods
with respect to other standard ones for further application in gene expression studies.

2 Methods and materials

Here, our idea is to estimate non-biological variation within arrays using some covariate
information. As fluorescence intensities readings of red and green dyes of all arrays
are available, one can easily compute the average log-intensity (denoted by A) and log-
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intensity ratio (indicated by M ). This ratio represents the actual relative expression
level for each gene within array that can be further estimated using the average log-
intensity for each gene within respective array. This ratio information may be thought
of our dependent variable under consideration and, average log-intensity information as
covariate. Therefore, non-biological variations within an array can be estimated on the
basis of this covariate using different regression approaches (especially, SVR and support
vector machine quantile regression (SVMQR)) and, subsequently normalization can be
achieved by subtracting the fitted value from the corresponding log-intensity ratio. Let
us, define rij and gij , i = 1, 2, . . . , n; j = 1, 2, . . . , p as fluorescence intensities readings of
jth probe in ith microarray sample for red and green dyes, respectively. n is the total
number of arrays and p is the total number of probes in ith microarray. As suggested by
Dudoit et al. (2002), we may use the basic strategy of MA plot concept to formulate first
rule. An MA plot depicts the relation between M values, which denote the log-ratio of
gene intensities and A values, which denote the average gene log-intensity (readings of red
and green dyes)for a spot. Hence, we can define the log-intensity ratio by mij = log2(

rij
gij

)

and average log-intensity as aij = 1
2 log2(

rij
gij

) for jth probe in ith array.

2.1 Using SVR approach

Consider, we are given a microarray data D = {aij ,mij}i=1,2,...,n
j=1,2,...,p, where aij ∈ R is a

one dimensional scalar input for jth probe in ith array, mij ∈ R is a one dimensional
scalar output corresponds to the same, n is the total number of arrays and p is the total
number of observed probes. In a linear case, mij is assumed to be linearly related as well
as independent and identically distributed (i.i.d.) scalar corresponds to aij for ith array.
Then, a linear regression function using SVR approach can be expressed as follows:

m̂ij = f(aij) = w aij + b; j = 1, 2, . . . , p; i = 1, 2, . . . , n (1)

where, w is a weight parameter and b ∈ R is a scalar bias (or, model error). Now, we need
to find out an optimal fitting of D. Depending upon chosen kernel, b may be implicitly
part of a kernel function (Kecman, 2001). In a non linear case, a non linear regression
function can be achieved by introducing the kernel trick principle of SVM (Scholkopf
and Smola, 2001). A non linear SVR has the property to transform a complex regression
function (in input space) into the comparatively simpler one (in high dimensional feature
space). This is done by a non linear mapping φ(aij) : R→ Rq, where q is usually equal
to one or, higher dimensional space. Then, this regression function takes a general form
suitable for both linear and non linear cases as given in 2:

m̂ij = f(aij) = wt
(1×q)φ(q×1) + b; j = 1, 2, . . . , p; i = 1, 2, . . . , n (2)

where, aij → φ(q×1) and φ(q×1) = [φ1(aij)φ2(aij) . . . φq(aij)]
t be the weight parameter

and the bias, respectively. Now, one can easily solve equation 2 using structural risk
minimization principle of SVM (Vapnik, 1995). This may be achieved by employing dif-
ferent types of loss functions (Vapnik, 1998). Here, we have used the linear ε-insensitive
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loss function (Vapnik, 1998) and obtained the result as follows:

L(mij , f(aij)) =| mij − f(aij) |ε=

{
0, if | mij − f(aij) |≤ ε
| mij − f(aij) | −ε, otherwise

(3)

where, j = 1, 2, . . . , p, i = 1, 2, . . . , n and ε is a measure of the permissible deviation (see
Figure 1). Our aim is now to find unknown parameters w(q×1) and b, which minimize

Figure 1: This shows the linear ε -insensitive loss function along with introducing slack
vectors ξ and ξ∗

the empirical risk as follows:

Remp(w, b) =
1

p

p∑
j=1

| mij −wt
(1×q)φ(q×1) − b |ε such that min || w(1×q) ||2 (4)

This optimization is equivalent to a problem of finding w(q×1) and b that minimizes the
risk quantity in a primal space, i.e., in space of w(q×1) and b. By introducing (non-
negative) slack variables ξij and ξ∗ij , an equivalent form of equation 4 can be obtained
as follows: 

Lp(w, b, ξ, ξ
∗) = min

w,b,ξ,ξ∗
{12wt

(1×q)w(q×1) + C
∑p

j=1(ξij + ξ∗ij)}

such that {mij −wt
(1×q)φ(q×1) − b} ≤ (ε+ ξij)

{wt
(1×q)φ(q×1) + b−mij} ≤ (ε+ ξ∗ij)

ξij , ξ
∗
ij ≥ 0; j = 1, 2, . . . , p; i = 1, 2, . . . , n

(5)

where, ξij and ξ∗ij have been used to measure the upper and lower deviation of train-
ing samples outside ε-insensitive zone, respectively (see Figure 1), ε is an error scalar
and C is a positive scalar (regularization parameter), which determines a trade-off be-
tween degree of flatness of f(aij) and an amount, upto which a deviation larger than
ε can be tolerated. From equation 5, a Lagrangian can be formed. By taking partial
derivatives of the Lagrangian with respect to w, b, ξ, ξ∗, α, α∗, β, β∗ (α, α∗, β, β∗: positive
Lagrangian multipliers), subsequent computations have been performed (see for further
details Burges (1998)). Finally, a dual formulation of the primal Lagrangian problem
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(equation 5) has been obtained as follows :

LD(αij , α
∗
ij) = max

α,α∗
{1

2
(αij − α∗

ij)(αij − α∗
ij) φ

t
(1×q)φ(q×1) (6)

+

p∑
j=1

mij(αij − α∗
ij)−

p∑
j=1

ε (αij − α∗
ij)}

such that

p∑
j=1

(αij − α∗
ij) = 0 and αij , α

∗
ij ∈ [0, C]; j = 1, 2, . . . , p; i = 1, 2, . . . , n.

A solution of αij , α
∗
ij in (equation 6) can be obtained using any standard quadratic

algorithm solver. Further, defining Kσ(aij , a
t
ij) = φt(1×q)φ(q×1), the non linear regression

function (equation 2) can be further rewritten as:{
m̂ij = f(aij)(1×1) = wt

(1×q)φ(q×1) + b

=
∑p

j=1(αij − α∗
ij)Kσ(aij , a

t
ij) + b

(7)

where,
∑p

j=1(αij −α∗
ij) φ(q×1) and Kσ(aij , a

t
ij) is a kernel function satisfying the Mercer

conditions (Smola et al., 1996). For given kernel parameters (C, ε), b can be calculated
using Karush-Kuhn-Tucker (KKT) conditions as follows:

b =
1

p

p∑
j=1

| mij − f(aij) | (8)

where f(aij) is defined in (equation 2). In this study, we have considered RBF kernel
with width σ. As RBF function implicitly defines bias, there of b can be removed directly
from equation 1. Moreover, one can also avoid estimation of b using RBF kernel, whose
functional form Kσ is as follows:

Kσ(aij , a
t
ij) = exp(−1

2
|| aij − atij ||2) (9)

2.2 Using SVMQR approach

Quantile regression is a robust approach for estimating the conditional quantile of a
distribution based on a covariate information. The basic idea behind quantile regression
arises from observations that minimizing the l1 loss function for a location estimator,
which yields the median. l1 loss function is basically minimizing the sum of the absolute
differences between the target value mij and estimated values f(aij). It is also known
as least absolute error (or, deviation). However, this idea can also be generalized to
obtain regression estimates for any quantile (Koenker and Park, 1996). Incorporating
the principle of this regression into SVR, SVMQR has been implemented (Takeuchi
et al., 2005). SVMQR may be thought as extended version of SVR that involves the
estimation of conditional quantile rather than mean. The modification in SVR is done by
defining a quantile based loss function, instead of taking linear ε-insensitive loss function
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in equation 3. The conditional estimates of τ -quantile is derived using the following
loss function:

ρτ (ξij) =

{
τ ξij ; if ξij ≥ ξij
(τ − 1) ξij ; ξij < 0

where,τ ∈ (0, 1) (10)

An alternative way (Koenker and Park, 1996) is to use a check function, ρτ (ξij), which
is expressed as below:

ρτ (ξij) = τ I(ξij ≥ ξij) + (τ − 1) I(ξij < 0) (11)

where, I(.) is the indicator function. If ξij ≥ ξij is true, I(.) = 1 is taken; otherwise
I(.) = 0. Onwards, we need to find unknown parameters w(q×1) and b of equation 12
that minimize the empirical risk defined in equation 4:{

Remp(w, b) = 1
p

∑p
j=1 | mij −wt

(1×q)φ(q×1) − b |ε, τ ∈ (0, 1)

subject to min || w(1×q) ||2
(12)

For simplicity of the formulation, we have considered the ε-insensitive SVR (ε = 0).
Therefore, equation 4 can be restructured as follows:

Lp(w, b, ξ, ξ
∗) = min

w,b,ξ,ξ∗
{12wt

(1×q)w(q×1) + C
∑p

j=1(ξij + ξ∗ij)}; τ ∈ (0, 1)

subject to {mij −wt
(1×q)φ(q×1) − b} ≤ ξij

{wt
(1×q)φ(q×1) + b−mj} ≤ ξ∗ij

ξij , ξ
∗
ij ≥ 0; j = 1, 2, . . . , p, i = 1, 2, . . . , n.

(13)

Similar to equation 6, a dual formulation of this problem can easily be obtained by
introducing α, α∗ positive Lagrangian multipliers into equation 13 (Takeuchi et al., 2005).
Now, taking partial derivatives with respect to w, b, ξ, ξ∗, α, α∗, a new solution can be
derived as follows:

LD(αij , α
∗
ij) = max

α,α∗
{1

2
(αij − α∗

ij)(αij − α∗
ij)φ

t
(1×q)φ(q×1) (14)

+

p∑
j=1

mij(αij − α∗
ij)

subject to

p∑
j=1

(αij − α∗
ij) = 0 and αij , α

∗
ij ∈ [(1− τ)C, τC]

where j = 1, 2, . . . , p; i = 1, 2, . . . , n and τ ∈ (0, 1).

This regression solution takes similar form as equation 7, the only difference is in the
ranges of Lagrangian multiplier of the dual formulation in equation 14. Similar result
has been obtained by Sohn et al. (2008). Further, equation 14 can also be solved using
any standard quadratic programming. In addition, this equation satisfies the quantile
property of having a fraction of τ = 0.5 points on either side of the regression as well
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as capability of tracking the observations more or less closely. Also, here we have used
RBF kernel. We have implemented both these methods, namely SVR and SVMQR,
in R environment using ’kernlab’ package (Karatzoglou et al., 2004). Moreover, the
practical estimates, defined in equation 6 and 14, requires a procedure for setting the
regularization parameters, which has been discussed in the following section.

2.3 Regularization parameters (σ,C, ε) selection approach

The user defined parameters (σ,C, ε) need to be tuned by an analyst (Vapnik, 1998).
However, we have applied the analytical selection method to choose those parameters
automatically along with 10-cross validation techniques (see for more details (Cherkassky
and Ma, 2004)). This parameter selection is quite powerful (Cherkassky and Ma, 2004;
Zhaoa et al., 2013). Our R-script is also capable of generating such parameter values.

2.4 Using LOWESS regression approach

One of the most commonly used normalization techniques is LOWESS approach that
utilizes principle of least squares regression by fitting simple models to localized data-
subsets, and also yields flexibility of a nonlinear regression (Cleveland et al., 1992). The
basic idea of this approach is that the regression function f(aij) (as defined in equation
1) can be locally approximated by fitting a linear least square regression surface to the
data points within chosen neighborhood points. However, weighed least squares may
also be used to fit linear or quadratic functions.

2.5 Using KERNEL regression approach

Another most widely used procedure in nonparametric curve estimator can be applied
in the form of NadarayaWatson kernel regression (Wand and Jones, 1995). The strategy
is to fit the function f(aij) (as defined in equation 1) within chosen neighborhood points
by locally fitting a certain degree polynomial function via weighted least squares prin-
ciple. This prediction completely depends on past observations. Here, we have used the
Gaussian Kernel, because of its centered mean characteristic and symmetric property.

2.6 Implementation of normalization methods

In this section, we have mainly formulated rules of normalization based on the above
mentioned approaches. The key idea is that each mij needs to be normalized by sub-
tracting the corresponding regression fitted value aij . Therefore, the normalized log-
intensity ratios nij are basically estimated residuals from average of their respective
regression fits. Consequently, we may define rules using the following approaches:

I. SVR normalization:

nij = mij − SVR(aij) (15)
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where, SVR(aij) are fitted values corresponds to aij for jth probe of ith array using
SVR.

II. SVMQR normalization:

nij = mij −
1

2
{SVRτ (aij) + SVR(1−τ)(aij)} (16)

where, SVRτ (aij) and SVR(1−τ)(aij) are τ th and (1− τ)th quantile SVMQR fitted

values corresponds to aij for jth probe of ith array.

III. LOWESS normalization:

nij = mij − LOWESS(aij) (17)

where, LOWESS(aij) are fitted values corresponds to aij for jth probe of ith array
using LOWESS.

IV. KERNEL normalization:

nij = mij −KERNEL(aij) (18)

where, KERNEL(aij) are fitted values corresponds to aij for jth probe of ith array
using KERNEL.

2.7 Methods to assess proposed normalizations

2.7.1 Computation of variance within replicate groups

To assess the efficiency of each normalization method, we have considered the variance
within the replicate groups, as defined in Workman et al. (2002). The estimator is as
follows:

σ̂2 =
1

n(p− 1)

n∑
i=1

p∑
j=1

{log2(aij)− log2(ai.)}2 (19)

where, i is an index over n probe intensities, j is an index over p replicates and ai. =∑p
j=1 aij . However, smaller variance within replicates, a normalization method provide

better solution.

2.7.2 Identification of differential genes

Identification of differential genes from these normalized data can also be used as an alter-
native method to assess their efficiencies. In this study, we have chosen non-parametric
empirical Bayes (eBayes) approach to identify genes, those are differentially expressed
(Smyth et al., 2004).



Electronic Journal of Applied Statistical Analysis 103

3 Results and Discussions

In this section, we have assessed all these normalization methods using three simulated
model based expression datasets and apoAI-K mouse model real dataset (Dudoit et al.,
2002). Further, we have also evaluated SVR as well as SVMQR methods with respect
to other standard normalizations, namely LOWESS and KERNEL methods.

3.1 Performance evaluation of SVM based normalization methods
with simulated data

Three simulated microarray datasets have been generated using a simulation model, pro-
posed by Balagurunathan et al. (2002); each of which contains six thousands spots. All
the true expression intensity readings for red and green dyes have been generated using
exponential distribution with parameter λ = 1

3000 , and 5% of total spots have further
been simulated as outliers using a Beta distribution with parameters β(1.7, 4.8). These
outliers are differential genes. In addition, we have applied a non linear transformation
function to intensity values, and also added random noises those follow Gaussian dis-
tribution. The parameters for red and green dyes of three simulated models used are
as follows: (a10 = 0, a11 = 100

1
0.9 , a12 = −0.9, a13 = 1) and (a20 = 0, a21 = 100

1
0.7 , a22 =

−0.7, a23 = 1) for sinusoid shape, (a10 = 0, a11 = 500, a12 = −1, a13 = 1) and (a20 = 0, a21 =
10, a22 = −1, a23 = 1) for banana shape and, (a10 = 0, a11 = 10, a12 = −1, a13 = 1) and

(a20 = 0, a21 = 100
1
0.7 , a22 = −0.7, a23 = 1) for mixed shape, respectively. Each simulation

model has been generated for 100 times. Finally, we have obtained three simulated mi-
croarray models, each having 30 slides along with six thousands spots. We have applied
SVR and SVMQR to those three models, which might be thought of representatives to
true gene expression data, and observed their performances using the above mentioned
evaluation criteria. We have used analytical selection technique for setting up regular-

Table 1: This table represents variance/ mean-variance estimates within the replicate
groups for simulated as well as real dataset

Normalization apoAI-K
mouse
model

dataset
for ba-
nana
shape

dataset
for si-
nusoid
shape

dataset
for mixed
shape

No normalization 0.1615 0.1251 0.1123 0.122

SVR normalization 0.1071 0.0385 0.0352 0.0364

SVMQR normalization 0.1069* 0.0388* 0.0356* 0.0367*

LOWESS normalization 0.1069 0.0668 0.0502 0.07

KERNEL normalization 0.1228 0.0566 0.0445 0.0579

∗ Best fitted results obtained from SVMQR normalization is at µ = 0.05.

ization parameters of both methods, namely SVR and SVMQR, and 10-cross validation
technique has been applied to generalize these estimates. The tolerance levels has been
fixed at 0.001, and lowest variance within replicates at µ = 0.05 has been achieved for all
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these models. We have found that both of them have successfully reduced non-biological
variabilities from these model datasets by more than 50% (see Table 1). The estimated
mean-variance within replicates (σ̂2) are computed as 0.1251 (for banana shape), 0.1123
(for sinusoid shape) and 0.1220 (for mixed shape), respectively. Fitting with SVR, σ̂2

has been reduced by 52.93% (for banana shape), 52.27% (for sinusoid shape) and 54.04%
(for mixed shape), respectively. Whereas, fitting with SVMQR at (µ = 0.05), 52.65%
(for banana shape), 51.86% (for sinusoid shape) and 53.75% (for mixed shape) reduction
in such estimates have been observed. It is desirable that a good normalization approach
should yield unbiased corrections and smaller variance estimates. This implies both SVR
and SVMQR are efficiently capable of reducing non-biological variabilities from a raw
gene expression data. Afterwards, we have proceed to assess whether the SVM based

Table 2: This table contains percentage of identified genes, out of 300 truly expressible
differential genes, from different normalized data using eBayes method at 1%
and 5% significance level

Normalization
Model for banana shape Model for sinusoid shape Model for mixed shape

at 1% level at 5% level at 1% level at 5% level at 1% level at 5% level

No normalization 27 35 20 30 36.33 37.33

SVR normalization 48 53 45.67 50.33 47.33 48.33

SVMQR normalization 51.33 55.4 46.33 52.67 49.3 51.6

LOWESS normalization 44.67 50.67 42.67 45.67 47.33 51

KERNEL normalization 38.33 39.33 37.33 37.33 38 38.67

normalized model data have the capability to identify significant numbers of differential
genes. Therefore, eBayes gene selection method has been applied to these data. Each
simulated model dataset contains 300 differential genes, which has been generated using
beta distribution, and may also be thought of truly expressible differential genes. It has
been found that about 144 (for banana shape), 137 (for sinusoid shape) and 142 (for
mixed shape) highly significant genes, out of those 300 differential genes, could be iden-
tified at 1% significance level, and 159 (for banana shape), 151 (for sinusoid shape) and
145 (for mixed shape) differential genes could be identified at 5% significance level from
SVR based normalized datasets. In contrast, SVMQR based such datasets (i.e. replace
such by normalized) have identified 154, 139, 148 genes (at 1% level), and 166, 158, 149
genes (at 5% level) for banana, sinusoid and mixed shape, respectively. These mean
that two proposed methods have found to be superior, in comparison to LOWESS and
KERNEL approaches (see Table 1 and 2). We have also drawn MA plot as a diagnostic
tool, which can be used to assess different normalization methods, visually or/and how
well data have been normalized. Figure 2 represents MA plot of log-intensities of raw
data for first slide along with fitted lines based on SVR and SVMQR, LOWESS and
KERNEL methods for simulated model dataset (2(a)) banana shape, (2(b)) sinusoid
shape, and (2(c)) mixed shape. Figure 2 also depicts that the fitted values could be
populated on MA plots using all these above approaches.
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(a) banana shape

(b) sinusoid shape

(c) mixed shape

(d) apoAI-K dataset

Figure 2: This figure represents MA plot representing log-intensities of raw data for
first slide along with fitted lines based on SVR and SVMQR, LOWESS and
KERNEL methods for simulated model dataset (a) banana shape, (b) sinusoid
shape, (c) mixed shape, and (d) apoAI-K dataset, respectively.
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3.2 Performance evaluation with real data

The apoAI knockout mouse model (apoAI-K) dataset has been retrieved from http://

www.stat.berkeley.edu/users/terry/zarray/Html/matt.html (Dudoit et al., 2002).
The apoAI-K dataset contains the Cy3 and Cy5 intensities of two channels for 16 mice;
out of which eight mice have the apoAI knocked-out gene (considered as treatment
group) and rest are normal C57B l/6 mice (as control group). Each array consists of
6384 spots, including 257 genes (spots) thought to be related to lipid metabolism. This
dataset has been already analyzed in several previous studies (Callow et al., 2000; Dudoit
et al., 2002). So, those results have been helped to assess their consistencies, and also
validated our results. We have applied both SVR and SVMQR to the apoAI-K mouse

Table 3: This table contains the names of the genes identified as differentially genes by
Dudoit et al. (2002) in the apoAI-K mouse model dataset along with the row
numbers of gene expression matrix

Row Number Gene Name

540 EST, Highly similar to APOLIPOPROTEIN A-I PRECURSOR [Mus musculus], lipid-UG

1496 EST

1739 Apo CIII, lipid-Img

2149 Apo AI, lipid-Img

2537 ESTs, Highly similar to APOLIPOPROTEIN C-III PRECURSOR [Mus musculus], lipid-UG

4139 EST, Weakly similar to C-5 STEROL DESATURASE [Saccharomyces cerevisiae], lipid-UG

4941 Similar to yeast sterol desaturase, lipid-Img

5356 CATECHOL O-METHYLTRANSFERASE, MEMBRANE-BOUND FORM, Brain-Img

model. Unlike earlier case, we have followed analytical selection technique for setting up
regularization parameters, and rest of those steps. SVMQR has achieved lowest variance
(σ̂2 = 0.1069) within replicates at µ = 0.05. In addition, we have chosen box plot as
a diagnostic plot, which has been employed to compare different approaches, visually
or/and check whether artifacts have been removed from data or, not. The box plot (in
figure 3) depicts that artifacts have been removed using SVR and SVMQR methods,
nicely. However, we also have alternative options to choose diagnostic tools such as
MA plot, density plot, heat map, relative log expression (RLE) plot, histogram, spatial
plot and dendrogram. Consequently, results have showed that SVR and SVMQR have
performed, efficiently (see Table 1). The estimated variance within the replicate groups
for raw data has been 0.1615. But, fitting with SVR method, σ̂2 has been reduced by
20.25%, while fitting with SVMQR method (µ = 0.05), has resulted 20.34% reduction in
such estimate. Using second evaluation criterion, we have checked the capability of those
methods identifying 8 differential genes, whose clone sequences have been biologically
verified and validated (Dudoit et al., 2002). Since the underlying biology of the mouse
model experiment has already been well understood, we can use this information to
assess their normalized qualities. Therefore, we have applied the eBayes gene selection
method. The names of those genes identified as differentially genes in the apoAI-K
mouse model dataset along with the row numbers of gene expression matrix are listed
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Figure 3: In this figure, the box plots represents log-intensities of raw data, normalized
data using SVR, SVMQR, LOWESS and KERNEL methods, respectively for
apoAI-K dataset. The first box plot shows that raw dataset contains so much
variation within arrays. But, after normalization using any methods, such vari-
ation can be removed. Both SVR and SVMQR performed as our expectation.

in Table 3. From Table 4, it has been clarified that both SVR and SVMQR have the
ability to identify those genes, and further yielded highly significant adjusted p-values
at 1% level of significance. Moreover, Table 4 reflects that other standard approaches,
namely LOWESS and KERNEL, are effective to identify the eight benchmark gene-
list and have achieved highly significant adjusted p-values. Figure (2(d)) represents
MA plot of log-intensities of raw data for first slide along with fitted lines based on
appearances, namely SVR, SVMQR, LOWESS and KERNEL, respectively. Also, it
assures the successful fitting of those values on the MA plot using all approaches.

4 Conclusion

The basic aim of normalization is to remove the non-biological variations as much as
possible from expression data. In this study, the performance of SVR and SVMQR
methods with respected to other standard ones, namely LOWESS and KERNEL, have
been compared. It has been observed that minimum estimated mean variance within
replications and identification of maximum number of differential genes could be possible
using our proposed approaches. Box plot of mouse model data also depicts that artifacts
could successfully be removed using those approaches. Further, to assess the efficiency
of each method, the variance within the replicate groups and identification of differential
genes were considered. In identification process, the eBayes approach was chosen due
to the eBayes statistic provides more stable inference than others, namely analysis of
variance, Welch t- statistic, significance analysis of microarrays modified t-statistic, and
permutation t- statistic. Furthermore, this approach works well, even if the number
of replicates is small and has also the flexibility to compare multiple groups simultane-
ously in arbitrary complicated designed experiments. The present study clearly indicates
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Table 4: This table illustrates a comparison of the differentially expressed genes in the
apoAI-K mouse model identified from different normalized methods. The p-
values are computed using eBayes static and FDR correction are made to adjust
the p-values. All genes are confirmed by biological methods.

Row Number No normalization SVR SVMQR LOWESS KERNEL

540 1.12e-06 1.22e-07 1.19e-07 2.03e-07 3.05e-07

1496 2.43e-02* 5.90e-04 5.83e-04 2.42e-05 1.21e-05

1739 1.81e-04 4.64e-05 4.01e-05 9.97e-08 3.05e-07

2149 6.70e-11 8.02e-11 7.77e-11 2.91e-12 1.80e-11

2537 6.15e-04 3.78e-06 3.65e-06 2.42e-05 1.20e-04

4139 6.15e-04 2.88e-06 2.82e-06 4.37e-06 4.77e-06

4941 6.31e-03 8.02e-04 7.95e-04 2.42e-05 1.34e-04

5356 2.92e-06 6.54e-07 6.34e-07 4.84e-08 1.08e-07
∗ Genes are not identified as differential genes from the respective normalized dataset

at 1% level of significance and e is the Euler’s Number

that SVM based normalization approaches are competent with other standard methods.
These may efficiently be employed to gene expression studies.
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