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Progressively Type-II censored sampling is an important method of ob-
taining data in lifetime studies. Statistical analysis of lifetime distributions
under this censoring scheme is based on precise lifetime data. However,
in real situations all observations and measurements of progressive Type-II
censoring scheme are not precise numbers but more or less non-precise, also
called fuzzy. In this paper, we consider the estimation of exponential mean
parameter under progressive Type-II censoring scheme, when the lifetime
observations are fuzzy and are assumed to be related to underlying crisp
realization of a random sample. We propose a new method to determine
the maximum likelihood estimate of the unknown mean parameter. In addi-
tion, a new numerical method for parameter estimation based on fuzzy data
is provided. Using the parametric bootstrap method, we then discuss the
construction of confidence intervals for the mean parameter. Monte Carlo
simulations are performed to investigate the performance of all the different
proposed methods. Finally, an illustrative example is also included.
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1 Introduction

The scheme of progressive censoring is of great value in life-testing experiments. Its al-
lowance for the removal of life units from the experiment at various stages is an attractive
feature as it will potentially save a lot for the experimenter in terms of cost and time.
It can be described as follows. Suppose that n units are placed on a life test and the
experimenter decides beforehand the quantity m, the number of units to be failed. Now
at the time of the first failure, R1 of the remaining n − 1 surviving units are randomly
removed from the experiment. Continuing on, at the time of the second failure, R2 of
the remaining n−R1 − 2 units are randomly removed from the experiment. Finally, at
the time of the mth failure, all the remaining n−m−R1− ...−Rm−1(= Rm) surviving
units are removed from the experiment.

Several authors considered different estimation procedures for lifetime distributions
based on progressively Type-II censored data. See, for example Cohen (1963), Viveros
and Balakrishnan (1994), Fernández (2004), Balakrishnan and Asgharzadeh (2005),
Raqab and Madi (2011) and Al-Zahrani and Gindwan (2015). Their research results
for estimating parameters of different lifetime distributions under progressive Type-II
censoring are limited to precise data. However, in real situations all observations and
measurements of continuous variables are not precise numbers but more or less non-
precise. For instance, the lifetime observations may be reported as imprecise quantities
such as: ’about 1000h’, ’approximately 1400h’, ’almost between 1000h and 1200h’, ’es-
sentially less than 1200h’, and so on. This imprecision is different from variability and
errors. The best up-to-date mathematical model for this imprecision are so-called non-
precise (fuzzy) numbers. Classical statistical procedures and Bayesian inference are not
appropriate to deal with such imprecise cases. Therefore, we need suitable statistical
methodology to handle these data as well.

In recent years, several researchers pay attention to applying the fuzzy sets to estima-
tion theory. Huang et al. (2006) proposed a new method to determine the membership
function of the estimates of the parameters and the reliability function of multiparam-
eter lifetime distributions. Coppi et al. (2006) presented some applications of fuzzy
techniques in statistical analysis. Pak et al. (2013) and Pak et al. (2014) conducted a
series of studies to develop the inferential procedures for the lifetime distributions on
the basis of fuzzy data. In this paper, we discuss different methods of estimation for
the parameter of exponential distribution on the basis of progressively Type-II censoring
scheme when the available observations are described by means of fuzzy numbers. In
Section 2, we first present in more detail the problem addressed in this paper. Some
preliminary concepts about fuzzy numbers is included in this section. In Section 3, we
obtain the maximum likelihood estimate (MLE) of the unknown mean parameter by
using EM algorithm. A new parameter estimation method, called ’computational ap-
proach estimation’ (CAE), is established in Section 4. By using the parametric bootstrap
method, we then discuss the construction of confidence intervals for the unknown mean
parameter in Section 5. In Section 6, a simulation study is carried out to assess the
performance of the different proposed methods, and a practical example in life testing
is analyzed for illustrative purposes.
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2 Problem description

Consider a reliability experiment in which n identical units are placed on a life-test.
Let X1, ..., Xn denote the lifetimes of these experimental units. Assume that these
variables are independent and identically distributed as exponential distribution, E(θ),
with probability density function (pdf)

f(x; θ) =
1

θ
exp(−x

θ
) , x > 0, θ > 0. (1)

Prior to the experiment, a number m < n is determined and the censoring scheme

(R1, R2, ..., Rm) with Ri ≥ 0 and
m∑
i=1

Ri + m = n is specified. During the experiment,

ith failure is observed and immediately after the failure, Ri functioning items are ran-
domly removed from the test. Let x1:m:n, ..., xm:m:n denote the m completely observed
lifetimes. The likelihood function based on this progressively Type-II censored sample
is (see Balakrishnan and Aggarwala, 2000)

L(θ; x) =
C

θm
exp(−

m∑
i=1

(1 +Ri)xi:m:n

θ
), (2)

where

C = n(n−R1 − 1)(n−R1 −R2 − 2)...(n−R1 − ...−Rm−1 −m+ 1).

Thus, the maximum likelihood estimator (MLE) of θ can be obtained by

θ̂ =
1

m
(

m∑
i=1

(1 +Ri)xi:m:n).

However, in many fields of application, lifetime observations can not be measured and
recorded precisely due to machine errors, human errors or some unexpected situations.
The two types of such data namely, censored data and truncated data are widely used in
practice. Censored data typically arise when an event of interest, such as a disease or a
failure, is only partially observed, because information is gathered at certain examination
times. One of the usual models of censored data is random interval-censorship. In
this case, the event is only known to happen between two random examination times.
The observations are thus of the form (Ui, Vi), i = 1, ..., n, and it is only known that
Ui ≤ Xi ≤ Vi, where the Xi, i = 1, ..., n, are the (partially observed) survival times.
Statistical analysis of lifetime distributions based on interval censored data has been
discussed by Ng and Wang (2009) and Tan (2009), among others.

The problem addressed in this paper, is different from interval censoring. We are not
concerned with imprecision arising from random inspection times, but with the situa-
tion in which the result of a random experiment is reported from the observer to the
statistician with some imprecision, arising from its limited perception or recollection of
the precise numerical values. For instance, consider a life-testing experiment in which
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n identical batteries are placed on a test, and we are interested in the lifetime of these
batteries. A tested battery may be considered as failed, or -strictly speaking- as non-
conforming, when at least one value of its parameters falls beyond specification limits.
In practice, however, the observer does not have the possibility to measure all param-
eters and is not able to define precisely the moment of failures, but rather he/she can
only approximate them by means of the following imprecise quantities: “approximately
lower than 1000 hours ”, “approximately 1500 to 2000 hours”, “approximately 2500
hours”, “approximately 3000 hours”, “approximately 3500 to 4000 hours”, “approxi-
mately higher than 4500 hours”, and so on. In order to model imprecise lifetimes, a
generalization of real numbers is necessary. These lifetimes can be represented by fuzzy
numbers. A fuzzy number is a subset, denoted by x̃, of the set of real numbers (denoted
by R) and is characterized by the so called membership function µx̃(.). Fuzzy numbers
satisfy the following constraints (Dubois, 1980):

(1) µx̃ : R −→ [0, 1] is Borel-measurable;
(2) ∃x0 ∈ R : µx̃(x0) = 1;
(3) The so-called λ−cuts (0 < λ ≤ 1), defined as Bλ(x̃) = {x ∈ R : µx̃(x) ≥ λ}, are

all closed interval, i.e., Bλ(x̃) = [aλ, bλ], ∀λ ∈ (0, 1].
Among the various types of fuzzy numbers, LR-type fuzzy numbers (the triangular and
trapezoidal fuzzy numbers are special cases of the LR-type fuzzy numbers) are most
convenient and useful in describing fuzzy lifetime data. Therefore, we shall focus on the
set of LR-type fuzzy numbers.

Definition 1 (Zimmermann, 2011, pp. 62). Let L (and R) be decreasing, shape
functions from R+ to [0, 1] with L(0) = 1; L(x) < 1 for all x > 0; L(x) > 0 for all
x < 1; L(1) = 0 or (L(x) > 0 for all x and L(+∞) = 0). Then a fuzzy number x̃ is
called of LR-type if for c, α > 0, β > 0 in R,

µx̃(x) =

{
L( c−xα ) x ≤ c
R(x−cβ ) x ≥ c

where c is called the mean value of x̃ and α and β are called the left and right spreads,
respectively. Symbolically, the LR-type fuzzy number is denoted by x̃ = (α, c, β).

Definition 2 Suppose that x̃i = (αi, ci, βi), i = 1, ..., n, be the LR-type fuzzy

numbers. The fuzzy mean value of these numbers can be obtained as
h
x = (ᾱ, c̄, β̄) where

ᾱ =
1

n

n∑
i=1

αi, c̄ =
1

n

n∑
i=1

ci and β̄ =
1

n

n∑
i=1

βi. (3)

For more details about the membership functions and probability measures of fuzzy sets,
one can refer to Singpurwalla and Booker (2004).

It must be noted that, our viewpoint in this paper is based on an epistemic interpre-
tation of fuzzy data, which are assumed to ”imperfectly specify a value that is existing
and precise, but not measurable with exactitude under the given observation conditions”
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(Gebhardt et al., 1998, p. 316). In this model, a fuzzy datum is thus seen as a possibility
distribution associated to a precise realization of a random variable that has been only
partially observed. In the next section, we introduce a generalization of the likelihood
function under progressively Type-II fuzzy censored data and obtain the MLE of θ.

3 The MLE of mean parameter

Suppose that n independent units are put on a test and that the lifetime distribution of
each unit is given by (1). Now consider the problem where under the progressively Type-
II censoring scheme, failure times are not observed precisely and only partial information
about them are available in the form of fuzzy numbers x̃i = (αi, ci, βi), i = 1, ...,m , with
the corresponding membership functions µx̃1(.), ..., µx̃m(.). Let c(1) ≤ c(2) ≤ ... ≤ c(m)

denote the ordered values of the means of these fuzzy numbers. The lifetime of Ri
surviving units, which are removed from the test after the ith failure, can be encoded as
fuzzy numbers z̃i1, ..., z̃iRi with the membership functions

µz̃ij (z) =

{
0 z ≤ c(i)
1 z > c(i)

, j = 1, ..., Ri.

The fuzzy data w̃ = (x̃1, ..., x̃m, z̃1, ..., z̃m), where z̃i is a 1 × Ri vector with z̃i =
(z̃i1, z̃i2, ..., z̃iRi), for i = 1, ...,m, is thus the set of observed lifetimes. The corresponding
observed-data log-likelihood function can be obtained, using Zadeh’s definition of the
probability of a fuzzy event (Zadeh, 1968), as

LO(w̃; θ) =
m∑
i=1

log

{∫
1

θ
exp(−x

θ
)µx̃i(x)dx

}
+

m∑
i=1

Ri∑
j=1

log

{∫
1

θ
exp(−z

θ
)µz̃ij (z)dz

}
.

(4)
Since the observed fuzzy data w̃ can be seen as an incomplete specification of a com-
plete data vector w, the EM algorithm is applicable to obtain the maximum likelihood
estimate of the parameter. The EM algorithm, introduced by Dempster et al. (1977), is
a very popular tool to handle any missing or incomplete data situation. This algorithm
is an iterative method which has two steps. In the E-step, it replaces any missing data
by its expected value and in the M-step the log-likelihood function is maximized with
the observed data and expected value of the incomplete data, producing an update of
the parameter estimates. In the following, we describe the EM algorithm to determine
the MLE of the parameter θ.

First of all, denote the lifetime of the failed and censored units by X = (X1, ..., Xm)
and Z = (Z1, ...,Zm), respectively, where Zi is a 1 × Ri vector with Zi = (Zi1, ...ZiRi),
for i = 1, ...,m. The combination of (X,Z) = W forms the complete lifetimes and the
corresponding log-likelihood function is denoted by L(W; θ). To perform the E-step of
the algorithm, we need to compute the conditional expectation of the complete-data log
likelihood logL(W; θ) conditionally on the observed data w̃, as follows:
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Eθ(h) (logL(W; θ) | w̃) = −n log θ − 1

θ

 m∑
i=1

Eθ(h)(Xi | x̃i) +
m∑
i=1

Ri∑
j=1

Eθ(h)(Zij | z̃ij)

 ,
(5)

where θ(h) denotes the current fit of θ at iteration h. The conditional expectations

α
(h)
i = Eθ(h)(Xi | x̃i) and β

(h)
ij = Eθ(h)(Zij | z̃ij) can be computed using

Eθ(h)(U | ũ) =

∫
uf(u | ũ; θ(h))du, (6)

where the conditional density of U given ũ can be obtained from

f(u | ũ; θ(h)) =
1
θ(h)

exp(− u
θ(h)

)µũ(u)∫
1
θ(h)

exp(− u
θ(h)

)µũ(u)du
. (7)

The M-step then consists in finding θ(h+1) which maximizes Eθ(h)(logL(W; θ) | w̃). This
is easily achieved by solving the likelihood equation. From

∂

∂θ
Eθ(h)(logL(W; θ) | w̃) = 0, (8)

we get

θ(h+1) =
1

n

 m∑
i=1

α
(h)
i +

m∑
i=1

Ri∑
j=1

β
(h)
ij

 . (9)

The MLE of θ can be obtained by repeating the E- and M-steps until the difference
LO(w̃; θ(h+1))− LO(w̃; θ(h)) becomes smaller than some arbitrary small amount.

4 Computational approach estimation method

In this section we propose a new parameter estimation procedure called ’CAE’. Although
the maximum likelihood estimate obtained in the preceding section is preferable, its
computation requires repeated evaluation of E- and M-steps until convergence occurs.
On the other hand, the CAE method provides not only the computational ease but also
reasonable mean squared errors. This finding is further discussed in Section 6.

Let x̃i = (αi, ci, βi), i = 1, ...,m, be the original progressively Type-II censored sample
from the population given in (1), with (R1, R2, ..., Rm) being the progressive censoring
scheme. Grzegorzewski and Hryniewicz (2002) considered the generalization of exponen-
tial model which admits vagueness in lifetimes. They obtained a fuzzy estimator for the
mean lifetime θ in the presence of vague lifetimes. However, in most applications, crisp
results are required instead of fuzzy ones. So, we propose the following computational
approach to obtain a crisp value as an estimate of θ .
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Step 1: Order the means of fuzzy numbers x̃i = (αi, ci, βi), i = 1, ...,m, as c(1) <
c(2) < ... < c(m).

Step 2: Obtain the fuzzy mean value, say
h
x, of the fuzzy numbers by using (3).

Step 3: Convert the fuzzy number
h
x into a real value by using the center of gravity

defuzzification technique (see Appendix A) as follows.

≈
x
∗

=

∫
xµh

x
(x)dx∫

µh
x
(x)dx

.

Step 4: The new estimate of θ is then computed by:

≈
θ =

≈
x
∗

+
1

m
(
m∑
i=1

Ric(i)). (10)

5 Bootstrap confidence intervals

In this section, we discuss the construction of confidence intervals (CIS) for the unknown
parameter θ using the two types of bootstrap methods, viz., percentile bootstrap (Boot-
p) method and the bias-corrected and accelerated (BCa) percentile bootstrap method;
see Efron and Efron (1982) and Efron and Tibshirani (1994) for pertinent details.

Before we discuss the construction of the bootstrap confidence intervals for θ, the
following algorithm is used to generate the bootstrap sample of fuzzy numbers based on
the original progressively Type-II censored fuzzy sample x̃i = (αi, xi, βi), i = 1, ...,m.

Step 1: Given the original progressively Type-II censored fuzzy sample x̃1, ..., x̃m,
compute the MLE of θ, say θ̂, using the iterative algorithm (9).

Step 2: Generate the progressively Type-II censored sample of size m, say x∗1, ..., x
∗
m,

with the underlying distribution as E(θ̂). Define the LR−type fuzzy numbers x̃∗1, ..., x̃
∗
m

as x̃∗i = (αi, x
∗
i , βi), i = 1, ...,m.

Step 3: Based on the simulated progressively Type-II censored fuzzy sample in Step
2 , calculate the bootstrap MLE of θ, denoted by θ̂∗, from (9).

Step 4: Repeat step 2 and 3, M times. Then, arrange all bootstrapped values of θ̂∗

in ascending order to obtain the ordered bootstrap sample of θ̂∗1 < θ̂∗2 < ... < θ̂∗M .
With the bootstrap sample generated as above, we propose the following two parametric
bootstrap confidence interval for θ.

Boot-p confidence interval:

A two sided 100(1− γ)% percentile bootstrap CI for θ is

(θ̂∗[M( γ
2
)], θ̂

∗
[M(1− γ

2
)]).

BCa percentile bootstrap confidence interval:

A two sided 100(1− γ)% BCa percentile bootstrap CI for θ is
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(
θ̂∗[αM ], θ̂

∗
[βM ]

)
,

where

α = Φ

(
ẑ0 +

ẑ0 − zα/2
1− â(ẑ0 − zα/2)

)
and

β = Φ

(
ẑ0 +

ẑ0 + zα/2

1− â(ẑ0 + zα/2)

)
.

Here, Φ(.) denotes the CDF of the standard normal distribution, zα is the upper α−point
of the standard normal distribution and [x] denote the integer part of x. The value of
bias-correction ẑ0 is given by

ẑ0 = Φ−1


M∑
j=1

I(θ̂∗j < θ̂)

M

 ,

and a good estimate of the acceleration factor â is suggested to be

â =

m∑
j=1

(θ̂(.) − θ̂(j))3

6

{
m∑
j=1

(θ̂(.) − θ̂(j))2
}3/2

,

where θ̂(j) is the MLE of θ based on the original Type-II censored fuzzy sample with the
jth observation deleted for j = 1, ...,m, and

θ̂(.) =
1

m

m∑
j=1

θ̂(j).

6 Numerical experiments

6.1 Simulation

In order to evaluate the performance of all the different methods discussed in the preced-
ing sections, a Monte Carlo simulation study was conducted and its results are described
in this section. First, for fixed θ = 1 and different choices of n , m and (R1, ..., Rm), we
have generated progressively censored sample x1, ..., xm from exponential distribution
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using the method proposed by Balakrishnan and Sandhu (1995). Then we define fuzzy
numbers x̃1, ..., x̃m with the corresponding membership functions

µx̃i(x) =

{
x−(xi−hi)

hi
xi − hi < x ≤ xi

xi+hi−x
hi

xi < x ≤ xi + hi
, i = 1, ..., r,

where hi = 0.05xi. This procedure simulates the situation where the observer has only
approximate knowledge of the failure times, and can only provide a guess xi and an
interval of plausible values [xi − hi, xi + hi]. From these fuzzy numbers, we obtain
the MLE of θ, using the iterative algorithm (9). We have used the initial estimate to

be θ(0) = 1
m

m∑
i=1

xi and the iterative process stops when the relative change of the log-

likelihood becomes less than 10−6. We also obtain the estimate of θ using the CAE
method. The average values (AV ) and mean squared errors(MSE) of the estimates
based on 1000 replication are presented in Tables 2-4. We also compute the 95% CIs
for θ using the Boot-p and BCa percentile bootstrap methods. The average confidence
lengths and coverage probabilities of the confidence intervals are reported in Tables 5-7.

From Tables 2-4, the following observations are made. The performance of the MLEs
are satisfactory in terms of AVs and MSEs. For fixed n as m increases, the MSEs
decrease for all cases as expected. Similar observations are made for the estimates of
θ obtained from the CAE method. It is also observed that, the MSEs of the estimates
based on the CAE method are quite close to that of the MLEs. Note that the above
estimation results can be attributed to the assumed fuzzy numbers. The rationales for
such fuzzy numbers, which are characterized by the membership functions, may influence
the estimate results.

Among the bootstrap methods for constructing confidence interval of θ, the BCa per-
centile bootstrap method is better than the Boot-p method with respect to the coverage
probabilities. From Tables 5-7, we can see that the coverage probabilities of the BCa
bootstrap CIs are close to the nominal level unless the effective relative sample fraction
(mn ) is small, while the same of the Boot-p CIs are lower than the nominal level. The
average confidence lengths of the Boot-p CIs are slightly smaller than the BCa bootstrap
CIs. We also realize from Tables 5-7 that a larger effective sample size (m) eventually
improves the probability coverages and lengths for both Boot-p and BCa bootstrap CIs.

6.2 Illustrative example

In a life-testing experiment the lifetimes (in 1000km) of front disk brake pads on a
randomly selected set of n = 40 cars are monitored by a dealer network. Suppose
that the random variable of interest is distributed exponentially by an unknown mean
parameter of θ. But, in practice measuring the lifetime of a disk may not yield an exact
result. A disk may work perfectly over a certain period but be braking for some time,
and finally be unusable at a certain time. So, the observed lifetimes are reported as fuzzy
numbers given below. In fact, imprecision is formulated by fuzzy numbers x̃i = (hi, xi),
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where hi = 0.005xi, i = 1, ..., 40, with membership functions

µx̃i(x) =

{
x−(xi−hi)

hi
xi − hi ≤ x ≤ xi

0 x > xi

DATA SET:
(0.11, 22.6), (0.11, 22.7), (0.14, 28.4), (0.15, 31.7), (0.16, 33.8),
(0.16, 33.9), (0.17, 34.4), (0.18, 36.7), (0.19, 38.4), (0.19, 38.8),
(0.20, 40.0), (0.20, 41.0), (0.21, 42.2), (0.21, 42.7), (0.21, 42.8),
(0.22, 45.1), (0.22, 45.5), (0.22, 45.9), (0.23, 46.9), (0.24, 48.8),
(0.25, 50.6), (0.25, 50.7), (0.25, 50.2), (0.25, 51.6), (0.26, 52.1),
(0.26, 53.6), (0.27, 54.2), (0.28, 56.4), (0.28, 56.7), (0.29, 59.0),
(0.29, 59.8), (0.30, 61.5), (0.31, 62.4), (0.32, 64.5), (0.36, 73.1),
(0.40, 80.6), (0.40, 81.3), (0.40, 81.7), (0.43, 86.2), (0.51, 102.5).

We consider progressively censored samples of size m = 16 from the above data using
three different sampling schemes, namely: Scheme 1: R1 = ... = Rm−1 = 0 and Rm = 24,
Scheme 2: R1 = 24 and R2 = ... = Rm = 0 and Scheme 3: R1 = ... = Rm−1 = 1 and
Rm = 9. In all the three cases, we obtain the estimates of θ using the MLE and CAE
procedures. We also compute the 95% confidence intervals using the Boot-p and BCa
percentile bootstrap methods. All the results are summarized in Table 1.

Table 1: MLE, CAE, Boot-p and the BCa confidence intervals for Example 1.

Scheme MLE CAE Boot-p BCa

1 103.2946 103.4273 (57.3583,156.2837) (69.4044,189.6155)

2 69.6673 69.7336 (38.5471,106.4726) (48.1239,131.7655)

3 94.1784 94.2925 (53.4195,148.2681) (61.3592,166.8601)

7 Conclusions

In this paper we have proposed different procedures for estimating the exponential distri-
bution parameter under progressively Type-II censoring when the lifetime observations
are fuzzy numbers. We have derived the MLE of the unknown parameter θ. Also, a com-
putational approach method for estimating θ from fuzzy numbers is introduced. Then,
We have presented two procedures for constructing confidence intervals for θ. Based on
the results of simulation study, we see clearly that, as the effective sample size increases,
the performances of the MLEs in terms of MSEs become better. The performance of the
estimates of θ based on the CAE method are quite similar to the MLEs, but it can be
easily seen that the CAE algorithm has no complicated likelihood equations involved for
solving the solution as the EM algorithm. Therefore, it can be efficiently implemented
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through a computing program.. We also see that, compared to the ordinary percentile
bootstrap CIs, the BCa percentile bootstrap CIs perform better in terms of the coverage
probabilities. The coverage probabilities of the CIs based on the BCa percentile boot-
strap method are quite close to the nominal level unless the effective relative sample
fraction (mn ) is small.

Appendix A

Center of gravity defuzzification method
Defuzzyfication is the opposite process to the essence of idea of fuzzy sets. Moreover,
defuzzyfication is the last step on fuzzy control system and fuzzy reasoning system.
Finally, defuzzyfication operation reduces, fuzzy number to a single, crisp, numerical
value, result carries the best information and makes kind of synthesis about this fuzzy
number. A common and useful defuzzification technique is the center of gravity method.
The center of gravity defuzzification technique can be expressed as

z∗ =

∫
zµC̃(z)dz∫
µC̃(z)dz

where z∗ is the defuzzified output, µC̃(z) is the membership function of the fuzzy set C̃.
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Table 2: Average values (AV) and mean squared errors (MSE) of the estimates of θ based
on the MLE and CAE methods for n = 20 and different sampling schemes.

m Censoring Scheme MLE CAE

AV MSE AV MSE

5 (0,0,0,0,15) 1.0099 0.1995 1.0072 0.2010

(15,0,0,0,0) 0.9875 0.2152 0.9893 0.2168

(0,15,0,0,0) 1.0086 0.2002 1.0091 0.2017

(1,1,1,1,11) 0.9881 0.2010 0.9916 0.2024

(2,2,2,2,7) 0.9871 0.2109 0.9835 0.2122

7 (0,...,0,13) 1.0079 0.1344 1.0081 0.1351

(13,0,...,0) 0.9962 0.1302 0.9944 0.1309

(0,13,0,...,0) 1.0083 0.1344 1.0091 0.1352

(2,...,2,1) 0.9915 0.1410 0.9940 0.1417

(1,...,1,7) 0.9937 0.1313 0.9921 0.1320

10 (0,...,0,10) 0.9969 0.1033 0.9973 0.1036

(10,0,...,0) 0.9965 0.1036 0.9945 0.1045

(0,10,0,...,0) 0.9956 0.1029 0.9976 0.1033

(1,...,1) 1.0081 0.0978 1.0095 0.0971

15 (0,...,0,5) 0.9992 0.0638 0.9977 0.0643

(5,0,...,0) 1.0030 0.0691 1.0042 0.0693

(0,5,0,...,0) 1.0033 0.0709 1.0043 0.0711
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Table 3: Average values (AV) and mean squared errors (MSE) of the estimates of θ based
on the MLE and CAE methods for n = 30 and different sampling schemes.

m Censoring Scheme MLE CAE

AV MSE AV MSE

10 (0,0,0,0,20) 0.9926 0.0991 0.9934 0.0995

(20,0,0,0,0) 0.9901 0.1009 0.9915 0.1011

(0,20,0,0,0) 0.9905 0.1011 0.9911 0.1018

(1,...,1,11) 1.0082 0.0949 1.0097 0.0954

(2,...,2) 1.0068 0.0968 1.0081 0.0974

15 (0,...,0,15) 1.0058 0.0628 1.0074 0.0633

(15,0,...,0) 0.9932 0.0666 0.9927 0.0670

(0,15,0,...,0) 0.9920 0.0650 0.9925 0.0652

(1,...,1) 0.9945 0.0644 0.9959 0.0646

20 (0,...,0,10) 1.0033 0.0513 1.0041 0.0515

(10,0,...,0) 0.9997 0.0500 1.0014 0.0501

(0,10,0,...,0) 0.9966 0.0475 0.9962 0.0476

25 (0,...,0,5) 0.9968 0.0425 0.9972 0.0426

(5,0,...,0) 1.0003 0.0418 1.0011 0.0419

(0,5,0,...,0) 1.0002 0.0379 1.0012 0.0379
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Table 4: Average values (AV) and mean squared errors (MSE) of the estimates of θ based
on the MLE and CAE methods for n = 50 and different sampling schemes.

m Censoring Scheme MLE CAE

AV MSE AV MSE

15 (0,...,0,35) 0.9923 0.0605 0.9918 0.0611

(35,0,...,0) 0.9928 0.0652 0.9934 0.0657

(0,35,0,...,0) 0.9944 0.0635 0.9927 0.0639

(1,...,1,21) 1.0038 0.0699 1.0065 0.0695

(2,...,2,7) 1.0040 0.0617 1.0035 0.0620

20 (0,...,0,30) 0.9937 0.0485 0.9941 0.0486

(30,0,...,0) 1.0046 0.0497 1.0061 0.0500

(0,30,0,...,0) 0.9940 0.0468 0.9936 0.0471

(1,...,1,11) 1.0049 0.0491 1.0068 0.0493

30 (0,...,0,20) 0.9978 0.0345 0.9987 0.0346

(20,0,...,0) 1.0048 0.0362 1.0058 0.0363

(0,20,0,...,0) 1.0040 0.0334 1.0052 0.0335

40 (0,...,0,10) 0.9980 0.0258 0.9990 0.0258

(10,0,...,0) 1.0038 0.0257 1.0053 0.0257

(0,10,0,...,0) 0.9973 0.0270 0.9992 0.0270
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Table 5: Average confidence lengths and the corresponding coverage probabilities of the
Boot-p and the BCa confidence intervals for n = 20 and different sampling
schemes.

m Censoring Scheme Boot-p BCa

Ave. Len. Cov. Pr. Ave. Len. Cov. Pr.

5 (0,0,0,0,15) 1.7219 0.897 2.1498 0.925

(15,0,0,0,0) 1.7302 0.895 2.0000 0.933

(0,15,0,0,0) 1.7379 0.898 1.9248 0.929

(1,1,1,1,11) 1.7285 0.899 2.1431 0.931

(2,2,2,2,7) 1.7234 0.892 2.1606 0.923

7 (0,...,0,13) 1.4750 0.916 1.8539 0.939

(13,0,...,0) 1.4586 0.913 1.6452 0.937

(0,13,0,...,0) 1.4668 0.910 1.6377 0.945

(2,...,2,1) 1.4262 0.901 1.5764 0.943

(1,...,1,7) 1.4301 0.914 1.7857 0.945

10 (0,...,0,10) 1.2220 0.919 1.5182 0.946

(0,10,0,...,0) 1.2155 0.924 1.3338 0.948

(1,...,1) 1.2317 0.921 1.3567 0.949

15 (0,...,0,5) 0.9990 0.928 1.2047 0.950

(5,0,...,0) 0.9967 0.925 1.0760 0.952

(0,5,0,...,0) 1.0007 0.935 1.0785 0.950
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Table 6: Average confidence lengths and the corresponding coverage probabilities of the
Boot-p and the BCa confidence intervals for n = 30 and different sampling
schemes.

m Censoring Scheme Boot-p BCa

Ave. Len. Cov. Pr. Ave. Len. Cov. Pr.

5 (0,...,0,20) 1.2493 0.927 1.5507 0.937

(20,0,...,0) 1.2253 0.929 1.3527 0.941

(0,20,0,...,0) 1.2411 0.928 1.3592 0.936

(1,...,1,11) 1.2118 0.919 1.4961 0.941

(2,...,2) 1.2379 0.922 1.3684 0.939

15 (0,...,0,15) 1.0025 0.937 1.2171 0.945

(15,0,...,0) 1.0278 0.936 1.1076 0.943

(0,15,0,...,0) 0.9959 0.934 1.0719 0.943

(1,...,1) 1.0020 0.935 1.0802 0.947

20 (0,...,0,10) 0.8682 0.940 1.0398 0.951

(10,0,...,0) 0.8759 0.939 0.9302 0.952

(0,10,0,...,0) 0.8708 0.940 0.9244 0.949

25 (0,...,0,5) 0.7791 0.942 0.9119 0.954

(5,0,...,0) 0.7684 0.941 0.8084 0.955

(0,5,0,...,0) 0.7794 0.944 0.8207 0.954
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Table 7: Average confidence lengths and the corresponding coverage probabilities of the
Boot-p and the BCa confidence intervals for n = 50 and different sampling
schemes.

m Censoring Scheme Boot-p BCa

Ave. Len. Cov. Pr. Ave. Len. Cov. Pr.

15 (0,...,0,35) 1.0017 0.929 1.2226 0.935

(35,0,...,0) 1.0130 0.925 1.0911 0.939

(0,35,0,...,0) 1.0057 0.931 1.0816 0.941

(1,...,1,21) 1.0084 0.929 1.2140 0.937

(2,...,2,7) 1.0070 0.933 1.1696 0.935

20 (0,...,0,30) 0.8727 0.935 1.0464 0.942

(30,0,...,0) 0.8720 0.940 0.9239 0.949

(0,30,0,...,0) 0.8602 0.937 0.9136 0.944

(1,...,11) 0.8689 0.940 1.0337 0.943

30 (0,...,0,20) 0.7121 0.941 0.8388 0.953

(20,0,...,0) 0.7145 0.944 0.7475 0.952

(0,20,0,...,0) 0.7091 0.942 0.7415 0.950

40 (0,...,0,10) 0.6113 0.948 0.7197 0.957

(10,0,...,0) 0.6181 0.946 0.6394 0.954

(0,10,0,...,0) 0.6152 0.946 0.6366 0.955
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