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A new method for the analysis of a multivariate dataset depending on
several factors is proposed. It is called AoV-PLS (Analysis of Variance-
PLS). It is based on the decomposition of the dataset into the main effects,
the interactions effects and possibly the residual matrix using a model akin to
analysis of variance (ANOVA). Each effect is considered in turn and assessed
through the use of a Partial Least Square regression (PLS-regression). The
connection of AoV-PLS to competing methods such as ANOVA-PCA and
ANOVA-Simultaneous Component Analysis (ASCA) is emphasized and these
methods are compared on the basis of a dataset pertaining to metabolomics
field.

keywords: ANOVA, ANOVA-Simultaneous Component Analysis, ANOVA-
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1 Introduction

It often occurs that we are faced with a problem that involves the collection of multi-
variate data that depend on several factors of variation. These are categorical variables
measured on the individuals. For instance, in sensory analysis, the so-called conventional
sensory profiling consists in assessing the sensory characteristics of a set of products by

∗Corresponding author: angelina.el-ghaziri@oniris-nantes.fr

c©Università del Salento
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means of trained assessors. Therefore, these multivariate data depend on several factors:
products, assessors, sessions of evaluation and the interaction between these factors. In
metabolomics, Smilde et al. (2005) expand on this kind of data and discuss the exam-
ple of several metabolites (variables) measured on animals at different points of time
according to an experimental design. One of the aims in these studies is to assess the
effect of the various factors on the variability of the data. When we dispose of only
one variable whose variations depend on several factors, we usually have recourse to
ANOVA. Likewise, when we dispose of multivariate data and one factor of variation,
one of the appropriate methods to use is discriminant analysis or one of its variants such
as PLS-Discriminant analysis (PLS-DA; Barker and Rayens, 2003; Nocairi et al., 2005).
We aim at extending PLS-DA to the case of several factors.

Since the situation considered herein (i.e. multivariate data depending on several
factors) is relatively common, several statistical methods to deal with this kind of data
have been proposed. Among these methods of analysis, we single out the following:

– Multivariate analysis of variance (MANOVA): typically, this method of analysis is
concerned with the assessment of the effect of several factors on a multivariate dataset.
However, it is focused on the assessment of the significance of the effects of the various
factors and does not yield an appropriate framework for an exploratory data analysis.
Moreover, it tends to be unstable in presence of quasi-colinearity among the multivariate
data which is a common occurrence in chemometrics (Smilde et al., 2005).

– ANOVA-Simultaneous Component Analysis or ASCA was introduced by Smilde
et al. (2005) in the context of metabolomics data. As discussed below, this method is
based on a generalization of the ANOVA decomposition of a single variable into its main
and interaction effects to the case of a multivariate dataset depending on several factors.

– ANOVA-PCA was first introduced in a proteomic data analysis framework (Harring-
ton et al., 2005, 2006), and later used in studies on reference materials (Sarembaud et al.,
2007). Similarly to ASCA, it is based on the same decomposition of the multivariate
dataset into its main and interaction effects.

We propose a method of analysis which bears similarities to ASCA and ANOVA-PCA.
Indeed, it is based on the same decomposition of the data matrix at hand according to the
various sources of variations and the matrix of residuals. However, instead of successively
performing a principal components analysis (PCA) on the matrices highlighting the
effects of the various factors, we advocate using PLS regression. The advantages of this
choice are twofold: (i) the method of analysis yields components that are likely to better
highlight the effect of the factors under study than methods based on PCA; (ii) It is a
straightforward extension of PLS-DA to the case of multiple factors.

The paper is organized as follows. In section 2, we discuss the proposed method
of analysis and its connections to ANOVA-PCA and ASCA. We also introduce the
case study pertaining to metabolomics field that is used to illustrate the approach of
analysis. In section 3, we outline the results concerning the case study and we compare
the performance of our approach of analysis to alternative approaches. We end the paper
by concluding remarks.
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2 Material and methods

2.1 The case of one factor

Suppose that we dispose of a multivariate dataset, X, depending on a factor F with
q levels. This case is known as the case of multivariate measurements on a sample
of individuals divided into q known groups. It pertains to the general framework of
discriminant analysis where methods such as Fisher’s linear discriminant analysis (LDA,
McLachlan, 2004) or PLS-discriminant analysis (Barker and Rayens, 2003; Kemsley,
1996) are used. We discuss a strategy of analysis that leads to a variant of PLS-DA.
The interest of this strategy is to hint to a general approach to analyze the data when
more than one factor are available.

Following the classical decomposition used in ANOVA, matrix X can be decomposed
as follows (Smilde et al., 2005; Harrington et al., 2005):

X = X̄ +XF + E

where X̄ and XF have the same dimensions as X (say, n individuals by p variables). The
rows of X̄ are all similar and each contains the average values of the variables in X. The
rows of XF associated with the same level of factor F are also identical and contain the
average values of the variables in X− X̄ restricted to the individuals associated with the
level of F under consideration. Finally, E is the matrix of residuals: E = X − X̄ −XF .
In a matrix form, if we denote by the vector of dimension n whose components are
equal to 1, we have X̄ = 1

n
TX (i.e. the projection of X on the space spanned by ). Let

us denote by k (k = 1, ..., q) the vector whose component i (i = 1, ..., n) is equal to 1 if
individual i has the level k and 0, otherwise. We have XF = PF (X − X̄), where PF is
the projector upon the space spanned by the vectors (k)k=1...q. From these developments
it follows that E and XF are orthogonal: XT

FE = 0 since E = (I−PF )(X− X̄), I being
the identity matrix. As a consequence, the covariance matrix of X can be decomposed
as follows

V = B +W

Where V = 1
n(X − X̄)T (X − X̄), B = 1

nX
T
FXF and W = 1

nE
TE. B and W are,

respectively, known as the between groups and the within groups covariance matrix.

In the following, we will consider that X is centered. This entails that X̄ = 0n×p (i.e.
zero matrix).

The aim of the following is to show that it is of high interest to investigate the re-
lationships between XF on the one hand and X = XF + E on the other hand. Let us
consider a strategy of investigation of the relationships between X and XF akin to PLS
regression analysis. More precisely, we seek a linear combination of X: t = Xw and a
linear combination of XF : u = XF ν so as to maximize cov(Xw,XF ν) under the con-
straint ‖w‖ = ‖ν‖ = 1, where cov(., .) stands for the covariance between two variables.
We have:

cov(Xw,XF ν) = 1
nw

TXTXF ν = 1
nw

T (XF + E)TXF ν = 1
nw

TXT
FXF ν + 1

nw
TETXF ν
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Since ETXF = 0, it follows that:

cov(Xw,XF ν) = 1
nw

TXT
FXF ν = wTBν

Since B is symmetric semi-definite positive, by applying Cauchy-Schwartz’ inequality,
we have:

wTBν ≤
√
wTBw

√
νTBν

Moreover, we know that the equality holds if and only if w and ν are collinear. This
means that w = ν since both these vectors are assumed to be of unit length. The
implication of these properties is that the maximum of cov(Xw,XF ν) over w and ν
(with ||w|| = ||ν|| = 1) is equal to the maximum of wTBw.

It follows that this maximum is achieved for w, eigenvector of B associated with the
largest eigenvalue, λ. We also have the following property:

λ = 1
nw

TXT
FXFw = 1

nw
T (PFX)T (PFX)w = 1

n(PF t)
T (PF t)

Where as stated above t = Xw and PF is the projector upon the space spanned by
the indicator variables associated with the levels of factor F . It follows that λ is equal
to the variance of PF t, which is, as a matter of fact, the between-group variance of
component t. Thus, the maximization criterion stated above seeks to determine a latent
variable, t, that sets the groups centroids associated with this latent variable apart as
far as possible. This is precisely the aim of PLS-discriminant analysis (Kemsley, 1996).
However, for technical reasons, the usual PLS-DA procedure leads to considering the
eigenvectors of a matrix B∗ which is, although very close to B, not interpretable in
terms of between-groups variation (Barker and Rayens, 2003; Nocairi et al., 2005).

Subsequent components can be determined following the deflation strategy that con-
sists in starting anew the same analysis after deflating the variables in X with respect
to the components determined at an earlier stage.

2.2 The case of several factors

The procedure outlined for the case of one factor can be easily extended to the case of
several factors. For this purpose, we draw from the approach of analysis followed by
ANOVA-PCA (Harrington et al., 2005) and ASCA (Smilde et al., 2005). For the sake of
simplicity, we consider the case of two factors G and L. We are interested in investigating
the effect of these two factors and their interaction. X which is, as previously, assumed
to be centered, can be decomposed as follows:

X = XG +XL +XGL + E

where XG and XL are defined in a very similar manner as discussed in the previous
section. XGL follows the same pattern since this matrix has the same number of rows
and columns as matrix X and the rows corresponding to each combination of the levels of
factor G and factor L are replaced by the average values of the variables in X−XG−XL

restricted to the individuals associated with this combination.
It is known that, in the case of balanced experimental designs, we have the following

decomposition of the variance covariance matrix:
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V = VG + VL + VGL + VE

Where V is the total variance covariance matrix, VG, VL, VGL and VE are respectively
the variance covariance matrices associated with factors G, L, the interaction and the
error.

In order to investigate the effect of factor G, we propose to undergo a PLS regression
of XG (matrix to be predicted) on XG +E (predictor matrix). The effect of factor L can
be investigated by performing a PLS-regression of XL on XL +E. Likewise, in order to
investigate the effect of the interaction, we propose to perform a PLS regression of XGL

on XGL + E.

The rationale behind this strategy of analysis is the following. When confronting XG

(for instance) to XG + E there are two configurations: (i) factor G is not significant
and, in this case, the variations among the levels of this factor (i.e. dataset XG) will be
completely diluted in the noise (i.e. dataset E). Therefore, the PLS components will
not succeed in distinguishing the signal XG from the noise E; (ii) factor G is significant
and, in this case, the PLS components will successfully set apart the levels of this factor.

An additional advantage of using the strategy of analysis proposed herein is that, by
performing PLS regression, we are led to a wide range of tools to assess the significance
of the factors and depict the outcomes graphically. Among these tools, we single out the
PLS latent components (scores), the Root Mean Square Error of Prediction (RMSEP),
the criterion Q2 and the Variables Importance in the Projection (VIP). We refer to the
book by Tenenhaus (1998) for a comprehensive exposition of these tools. Furthermore,
one can perform an ANOVA on each PLS component in order to assess its ability to
significantly discriminate the levels of the factor under study.

2.3 Comparison of methods

By way of comparing methods, we recall that both ASCA and ANOVA-PCA are based
on the same decomposition of X as in AoV-PLS, namely:

X = XG +XL +XGL + E

In ASCA it is advocated performing a PCA on XG in order to assess the significance of
the effect of factorG. The rationale behind this strategy of analysis is to seek components
that recover the variations among the levels of factor G. Formally, we seek, in a first
step, a component t = XGw such that var(t) is maximized, where var(.) stands for
the variance. However, as pointed out in the literature (Vis et al., 2007; Zwanenburg
et al., 2011), with this approach we are unable to assess the significance of a factor since
the variation between the factor levels is maximized but the within group variations are
missing. Permutation tests were proposed to overcome this problem (Vis et al., 2007;
Zwanenburg et al., 2011).

For the assessment of the effect of factor G, ANOVA-PCA amounts to performing
PCA of XG + E. The rationale behind this strategy of analysis is that if factor G
is significant then it is likely to overcome the noise and emerge on the first principal
components of PCA performed on XG + E. However, in practice it may occur that,
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although the factor G is significant, the dataset XG may be so overwhelmed by the
noise that it does not show up on the first components (Climaco-Pinto et al., 2009).
To counteract this problem, Climaco-Pinto et al. (2009) proposed a strategy of analysis
which consists in progressively reducing the impact of the noise. These authors also
proposed a permutation test to assess the significance of the effect of the factor under
consideration.

Formally, in ANOVA-PCA, we seek, in a first step a component u = (XG +E)ν with
||u|| = 1, such that var(u) is maximized.

In AoV-PLS, we stated above that we seek to maximize cov(XGw, (XG + E)ν). We
have:

cov2(XGw, (XG + E)ν) = var(XGw)× var((XG + E)ν)× cor2(XGw, (XG + E)ν)

Clearly, the first term, var(XGw), is the same term as in ASCA. The second term,
var((XG+E)ν) is the same term that is maximized in ANOVA-PCA. The term cor2(XGw, (XG+
E)ν) ensures that the directions outlined by XGw and (XG +E)ν agree with each other
as much as possible. Therefore, AoV-PLS realizes a compromise between these two
methods of analysis.

2.4 Metabolomics dataset

We illustrate AoV-PLS and compare its outcomes to those of ASCA and ANOVA-PCA
on the basis of metabolomics data pertaining to a nutritional experiment in a rodent
programming model (Agnoux et al., 2014). The global aim of the experiment is to
assess the impact of maternal nutrition during both gestation and lactation periods
(foetal and post-natal nutrition) on the metabolic status of the suckled offsprings and
later at adulthood. The experimental design involved two factors related to maternal
feeding patterns:
– FactorG (“gestation”): rat pups were born from dams submitted to a protein-restricted
diet (level: R) or from control dams (level: C).
– Factor L (“lactation”): rat pups were weaned by dams submitted to protein-restricted
diet (R) or by control dams (C).
This results in four groups of rat pups (labeled with a first letter related to gestation
and a second latter to lactation):

-RC: rat pups born from protein-restricted dams and weaned by control dams (51 rat
pups).

-RR: rat pups born and weaned by protein-restricted dams (55 rat pups).

-CR: rat pups born from control dams and weaned by protein-restricted dams (26 rat
pups).

-CC: rat pups born and weaned by control dams (56 rat pups).
All in all, we dispose of 188 experimental unit (rat pups) on which 1031 metabolomics
variables were measured.

AoV-PLS was run on these data by considering successively the factor gestation de-
noted by G, the factor lactation denoted by L and the interaction denoted by GL.
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For each case, we determine in a first step, the AoV-PLS components that turn out
to be significant. The relevance of theses components was assessed by means of the
mean squared errors of prediction (MSEP) based on a leave-one-out cross-validation
procedure. We also performed a one-way ANOVA on each latent component considering
the factor under study as a source of variation. Once the appropriate number of AoV-
PLS components was selected, these components were subjected to a Fisher’s linear
discriminant analysis (LDA).

3 Results

3.1 Factor “gestation”

In order to assess the impact of factor G, we performed a PLS regression of XG on
XG +E. Table 1 shows the percentage of total variance in XG and XG +E explained by
the first ten PLS components. We also show in this table the p-values associated with a
one way ANOVA performed on each PLS component.

Table 1: The percentages of total variance in XG and XG +E explained by the ten first
AoV-PLS components. P-values associated with one way-ANOVA performed
on each component.

percentage of explained variation p-values

XG XG + E Factor G

comp 1 17.83 10.70 0.00

comp 2 18.61 9.67 0.00

comp 3 19.01 4.66 0.00

comp 4 15.00 2.77 0.00

comp 5 10.54 2.57 0.00

comp 6 6.79 2.31 0.00

comp 7 3.57 2.96 0.01

comp 8 1.62 5.08 0.08

comp 9 1.84 2.57 0.06

comp 10 1.37 2.22 0.11

Not surprisingly considering the large number of variables involved in this case study,
the total variance recovered by the successive PLS components is not very large. Yet,
the first seven PLS components seem to significantly discriminate the two levels of factor
G (significance level α = 5%).

These findings are corroborated by the evolution of the mean squared error of predic-
tion (MSEP) as a function of the number of PLS components introduced in the model
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Figure 1: MSEP associated with factor “gestation”

(figure 1). As stated above, the MSEP values were obtained from a leave-one-out cross-
validation procedure. It can be seen in figure 1 that the MSEP curve steadily decreases
from component 2 down to component 7 and starts slightly to increase. The scores asso-
ciated with the first two PLS components are depicted in figure 2 where each individual
in XG + E is labeled by the group to which it belongs (R for born from “restricted”
dams and C for born from “control” dams). This figure shows a fair separation of the
two groups along the first main diagonal.

From the MSEP curve and the p-values associated with the one-way ANOVA per-
formed on the PLS components, we decided to retain seven components. These compo-
nents were subjected to Fisher’s LDA considering factor G as the group variable. This
resulted in a single canonical variate whose values are depicted as box plots for both
the groups of rat pups (i.e. pups born from restricted (R) dams and from control (C)
dams) (figure 3). The two groups are clearly discriminated. Moreover, the p-value of the
one-way ANOVA performed on this canonical variate led to a significant discrimination
(p-value < 0.001).

By way of comparing methods, we performed ANOVA-PCA and ASCA on the same
data. Table 2 shows the percentage of total variance in XG and ZG = XG +E recovered
by the components derived from these two methods. It also shows the p-values associated
with a one-way ANOVA performed on each component, considering G as a factor.

For ANOVA-PCA, it turns out that none of the first ten components is related to XG

since, on the one hand, the total variances in XG recovered by these components are
very small and, on the other hand, the p-values do not indicate that the two groups are
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Figure 2: AoV-PLS on “gestation” factor. Representation of the individuals on the first
two PLS components. Each individual is labeled by the group it belongs to (R
for ‘protein-restricted’ and C for ‘control’.)

significantly discriminated.
Regarding ASCA, not surprisingly the PCA performed on XG led to a single compo-

nent that explained 100% of the variation in XG. This is because XG contains only two
different rows, each repeated as many times as there are individuals in the associated
group (R or C). The rows of XG + E were superimposed by projection on this compo-
nent (Zwanenburg et al., 2011) and the scores thus obtained were depicted in figure 4
as box plots associated to the two groups (R and C). It can be seen that the two groups
of individuals are not clearly discriminated. However, one-way ANOVA performed on
the first ASCA component considering G as a factor led to a significant discrimination
(p-value < 0.001).
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Figure 3: Factor “gestation”. Box plot of the LDA canonical variate obtained by per-
forming LDA on the first seven AoV-PLS components. Group C contains indi-
viduals born from control dams (CC or CR) and group R contains individuals
born from protein-restricted dams (RC or RR).

3.2 Factor “lactation”

We proceeded in a very similar way for factor L as for factor G. Table 3 shows the
percentages of total variances in XL and XL +E explained by the first ten components.
It also shows the p-values associated with a one-way ANOVA performed on each com-
ponent. It turns out that the first six components seem to be relevant for discriminating
the two levels of factor L.

The scores associated with the first two AoV-PLS components are depicted in figure
5 where each individual in XL + E is labeled by the group to which it belongs (R for
suckled by protein-restricted dams and C for nursed by control dams). This figure shows
a good separation of the two groups along the first main diagonal.

The one way ANOVAs performed on each component (table 3) together with the
evolution of the MSEP as a function of the number of components introduced in the
model indicate to retain 5 components (figure 6). These five components where subjected
to Fisher’s LDA and resulted in a single canonical variate. It can be seen in figure 7
that this canonical variate perfectly separates the two groups of factor L.

ANOVA-PCA performed on these data showed a much better performance as when
it was applied to the data concerning factor G. From table 4, we can see that among
the first ten PCA components, components 2, 3, 4, 5, 6 and 10 seem to significantly
discriminate the two groups of factor L. The fourth component is the component that
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Table 2: The percentages of total variance in XG and XG + E explained by the ten
first ANOVA-PCA and ASCA components. P-values associated with one way-
ANOVA performed on each component.

ANOVA-PCA ASCA

XG XG + E p-values XG XG + E p-values

comp 1 0.52 17.09 0.32 100 0.73 0

comp 2 0.00 7.08 0.98 0 0.10 1

comp 3 1.82 6.77 0.07 0 1.25 1

comp 4 0.60 4.39 0.29 0 0.17 1

comp 5 0.21 3.86 0.53 0 0.54 1

comp 6 1.07 3.09 0.16 0 0.35 1

comp 7 0.36 2.71 0.42 0 0.74 1

comp 8 1.07 2.44 0.16 0 0.84 1

comp 9 0.82 2.32 0.22 0 0.59 1

comp 10 0.07 1.92 0.72 0 0.50 1

explains the most variation in XL (about 15%). This should be contrasted with the
outcomes from AoV-PLS where the first component alone explains up to 47.69 % of the
variation in XL. Up to 20 ANOVA-PCA components were retained and submitted to
LDA. Figure 8 shows the box plot associated with the canonical variate derived from
this analysis. We can see that this canonical variate operates a fair discrimination of
the two groups but this discrimination is less marked than that obtained by means of
AoV-PLS (figure 7).

Regarding the outcomes of ASCA, PCA performed on XL naturally led to a single
component. The data from ZL = XL + E were superimposed on this component and
the scores thus obtained were depicted as box plots associated with the two groups (R
and C). As shown in figure 9, the two groups are not at all discriminated. However,
one-way ANOVA performed on the first ASCA component considering L as a factor led
to a significant discrimination (p-value < 0.001).
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Figure 4: Factor “gestation”. Box plot of the first ASCA component for groups C (Con-
trol) and R (Restricted). Group C contains individuals born from control dams
(CC or CR) and group R contains individuals born from protein-restricted
dams (RC or RR).

3.3 Interaction

The strategy of analysis advocated by AoV-PLS was applied to investigate the inter-
actions of factors G and L. We recall that, in this case, this amounts to performing a
PLS regression of dataset XGL on ZGL = XGL + E. Table 5 shows the percentages of
total variances in XGL and ZGL recovered by the first ten components. It also shows the
p-values associated with a one-way ANOVA performed on each component considering
the interaction GL as a factor. It turns out that the first nine components seem to be
relevant for discriminating the four groups RC, RR, CR and CC.

In a subsequent stage, the first nine PLS components were submitted to a Fisher’s
discriminant analysis which resulted in three canonical variates. In figure 10, we depict
the individuals in ZGL on the basis of the first two canonical variates. It appears that
the two groups that were not submitted to a nutritional switch, namely CC and RR are
fairly separated from the two groups that were submitted to a nutritional transition,
namely RC and CR.

By way of comparing methods, we performed ANOVA-PCA and ASCA on the same
data. Table 6 shows the percentages of total variances in XGL and ZGL recovered by the
first ten components associated to each method together with the p-values associated
with a one-way ANOVA performed on each component. It is clear that the outcomes
from ANOVA-PCA are not relevant or would necessitate to investigate more than ten
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Table 3: The percentages of total variance in XL and XL + E explained by the first
ten AoV-PLS components. P-values associated with the one way ANOVA per-
formed on each component.

percentage of explained variation p-values

XL XL + E Factor L

comp 1 47.69 8.05 0.00

comp 2 13.13 13.01 0.00

comp 3 14.25 5.01 0.00

comp 4 8.91 3.57 0.00

comp 5 5.91 2.42 0.00

comp 6 2.96 2.65 0.02

comp 7 1.37 4.47 0.11

comp 8 1.38 3.49 0.11

comp 9 0.88 2.71 0.20

comp 10 0.77 1.80 0.23
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Figure 5: AoV-PLS on “lactation” factor. Representation of the individuals on the first
two PLS components. Each individual is labeled by the group it belongs to (R
for suckled by protein-restricted dams and C for nursed by control dams)
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components. ASCA naturally led to three significant components. The data in ZGL

were superimposed on these components. The scores thus obtained were subjected to
Fisher’s LDA. We depict in figure 11 the values of the three canonical variates obtained
by Fisher’s LDA as box plots for each group of rat pups. We can see that no separation
of the groups is achieved by any of the Fisher’s LDA canonical variates. The p-values
associated with a one-way ANOVA performed on each of the three canonical variates
considering the interaction GL as a factor, indicated that only the first canonical variate
was significant.
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Figure 7: Factor “lactation”. Box plot of the LDA canonical variate associated with
the first five AoV-PLS components. Group C contains individual nursed by
control dams and group R contains individuals suckled by protein-restricted
dams.

4 Conclusion

For the analysis of multivariate data depending on several factors, we proposed a method
of analysis to investigate the effect of the various factors and their interactions. Similarly
to ANOVA-PCA and ASCA, AoV-PLS starts from the well known ANOVA model which
decomposes a data matrix into a sum of matrices that reflect the effects of the various
factors and their interactions. However, whereas ASCA and ANOVA-PCA are based on
a PCA of each factor effect or the factor effect augmented by the matrix of residuals,
we advocate performing a PLS regression on each factor effect upon this factor effect
augmented with the residuals. The rationale behind this strategy is very clear since it
consists in assessing whether the factor effect overpowers the noise (significant factor) or
whether it is diffused in the noise (non significant factor). By using PLS regression, we
access to a wide range of tools that make it possible to undertake an exploratory study
(graphical displays, indicators...) and a confirmatory study (regression/discrimination,
cross-validation...). We have emphasized the link between AoV-PLS and ANOVA-PCA,
on the one hand, and ASCA, on the other hand. In particular, we showed that AoV-PLS
appears as a compromise between these two methods since it aims at recovering the vari-
ation in each effect matrix (similarly to ASCA) and in the effect matrix augmented with
the noise matrix (similarly to ANOVA-PCA). The comparison of these three methods
on the basis of the metabolomics data showed a much better performance of AoV-PLS
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Figure 8: Factor “lactation”. Box plot of the LDA canonical variate associated with the
first 20 ANOVA-PCA components. Group C contains individual nursed by
control dams and group R contains individuals suckled by protein-restricted
dams.

than the other two alternative methods.
As stated above, AoV-PLS was applied to a metabolomics dataset which involved a

relatively large number of variables. In the course of this case study, we showed how
AoV-PLS could be used in conjunction with Fisher’s LDA. The former method makes
it possible to exhibit directions of interest for a discrimination purpose and the latter
method focuses on discriminating the groups on the basis of a small number of canonical
variates.

Within the context of discriminant analysis using a partial least squares strategy,
several variants have been proposed (Sabatier et al., 2003; Lombardo et al., 2012). It is
clear that these variants could be applied instead of PLS-DA as presented herein. The
interest of using these alternative strategies will be investigated in a future work.

An important aspect that we have overlooked concerns the impact of the experimental
design on the outcomes of the strategy of analysis proposed herein. This aspect was also
overlooked when introducing ASCA and ANOVA-PCA. We believe that this aspect
deserves more attention.

As a final remark, we point out that there exists a method of analysis called ANOVA-
PLS which was proposed by Thissen et al. (2009). This method is different from the
approach proposed herein since the ANOVA decomposition of matrix X is used to pre-
dict other response variables by means of PLS-regression whereas in our approach PLS-
regression is used to assess the significance of the various factors at hand and no addi-
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Table 4: The percentages of total variance in XL and XL + E explained by the ten
first ANOVA-PCA and ASCA components. P-values associated with one way-
ANOVA performed on each component.

ANOVA-PCA ASCA

XL XL + E p-values XL XL + E p-values

comp 1 1.13 16.84 0.15 100 2.61 0

comp 2 9.15 7.06 0.00 0 0.13 1

comp 3 2.25 6.91 0.04 0 0.5 1

comp 4 15.75 4.78 0.00 0 0.2 1

comp 5 3.28 4.00 0.01 0 0.31 1

comp 6 5.57 3.27 0.00 0 0.43 1

comp 7 0.75 2.68 0.24 0 0.48 1

comp 8 1.08 2.40 0.16 0 0.68 1

comp 9 1.38 2.30 0.11 0 0.31 1

comp 10 6.27 1.98 0.00 0 0.55 1

C R

−1
5

−1
0

−5
0

5
10

AS
CA

 c
om

p1
 s

co
re

s

Figure 9: Factor “Lactation”. Box plot of ASCA component for groups C (Control)
and R (Restricted). Group C contains individual nursed by control dams and
group R contains individuals suckled by protein-restricted dams.
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Table 5: The percentages of total variance in XGL and XGL + E explained by the first
ten AoV-PLS components. P-values associated with the one way ANOVA per-
formed on each component.

percentage of explained variation p-values

XGL XGL + E interaction GL

comp 1 16.06 11.47 0.00

comp 2 16.32 9.11 0.00

comp 3 15.34 4.42 0.00

comp 4 9.22 3.57 0.00

comp 5 7.33 2.53 0.00

comp 6 4.12 3.64 0.00

comp 7 2.87 4.29 0.01

comp 8 2.25 2.77 0.03

comp 9 2.20 2.05 0.02

comp 10 1.24 2.10 0.10
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Figure 10: Interaction, representation of the individuals on the first two canonical vari-
ates of LDA performed on the first nine AoV-PLS components.



232 El Ghaziri et al.

Table 6: The percentages of total variance in XGL and XGL + E explained by the ten
first ANOVA-PCA and ASCA components. P-values associated with one way-
ANOVA performed on each component.

ANOVA-PCA ASCA

XGL XGL + E p-values XGL XGL + E p-values

comp 1 0.79 17.10 0.21 87.46 0.92 0

comp 2 0.61 7.09 0.26 10.00 0.11 0

comp 3 1.09 6.73 0.12 2.54 0.03 0

comp 4 1.60 4.43 0.08 0.00 0.05 1

comp 5 0.83 3.88 0.21 0.00 1.13 1

comp 6 0.93 3.09 0.20 0.00 0.84 1

comp 7 0.65 2.72 0.23 0.00 0.25 1

comp 8 0.80 2.43 0.20 0.00 0.42 1

comp 9 0.89 2.32 0.19 0.00 0.48 1

comp 10 2.81 1.97 0.02 0.00 0.72 1
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Figure 11: Interaction. Box plots of the three LDA canonical variates associated with
the three ASCA components.
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tional (response) variables are involved.
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