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Variable selection in count data using penalized Poisson regression is one
of the challenges in applying Poisson regression model when the explanatory
variables are correlated. To tackle both estimate the coefficients and perform
variable selection simultaneously, elastic net penalty was successfully applied
in Poisson regression. However, elastic net has two major limitations. First
it does not encouraging grouping effects when there is no large correlation.
Second, it is not consistent in variable selection. To address these issues,
a modification of the elastic net (AEN) and its adaptive modified elastic
net (AAEM), are proposed to take into account the weak and mild corre-
lation between explanatory variables and to provide the consistency of the
variable selection simultaneously. Our simulation and real data results show
that AEN and AAEN have advantage with weak, mild, and extremely corre-
lated variables in terms of both prediction and variable selection consistency
comparing with other existing penalized methods.

keywords: high dimensional, penalization, Poisson regression, LASSO, elas-
tic net.

1 Introduction

With the advancement of technologies, massive amount of data with increasing dimen-
sions have been generated in many areas such as genetics, medical, economic and social

∗Corresponding author: mhl@utm.my

c©Università del Salento
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sciences. The expansion of the data is in two dimensions: the number of variables and
the number of observations. High dimensional data refer to the situation where the
number of variables measured is greater as the number of observations in the data. This
differs from traditional datasets for statistical analysis where we have many observations
on a few variables. Such high dimensional data has posed new challenges to statistical
analysis, because a lot of classically statistical methods do not automatically apply into
these datasets, for example, the curse of dimensionality makes many classical regres-
sion models, such as Poisson regression, ineffective, because statistical issues associated
with modeling high dimensional data include model overfitting, estimation instability,
computational difficulty (Pourahmadi, 2013).

How to reduce the dimensionality has been an important research question in sta-
tistical application. One way to handle the high dimensional data is to perform data
reduction. To do this, various penalized methods have been proposed begin by ridge
penalty (Hoerl and Kennard, 1970). It estimates the regression coefficients through L1-
norm penalty. It is well-known that ridge regression shrinks the coefficients of correlated
predictor variables toward each other, allowing them to borrow strength from each other
(Friedman et al., 2010). The least absolute shrinkage and selection operator (LASSO)
was proposed by Tibshirani (1996) to estimate the regression coefficients through L1-
norm penalty. Zou and Hastie (2005) proposed the elastic net penalty which is based on
a combined penalty of LASSO and ridge regression penalties in order to overcome the
drawbacks of using the LASSO and ridge regression on their own.

Usually, in high dimensional data the explanatory variables are correlated. If there is
a group of highly correlated variables, the LASSO will randomly select only one variable
from this group and drop the rest whereas elastic net will select the whole group of the
highly correlated explanatory variables (Zou and Hastie, 2005; Zhou, 2013). Analogously,
Bondell and Reich (2008) proposed a penalty called OSCAR to encourage selection of
a group of highly correlated explanatory variables. Elastic net often performs better
than LASSO in terms of prediction error when there is correlation among variables, also
OSCAR has a comparable performance similar to elastic net (Zeng and Xie, 2011). Tutz
and Ulbricht (2009) proposed correlation-based penalty to deal with grouping effects.
This penalty just makes variable shrinkage rather than variable selection. Elastic net
penalty lacks consistent variable selection (oracle property) even though it outperforms
LASSO. Zou and Zhang (2009) proposed adaptive elastic net to handle grouping effects
and enjoying oracle property simultaneously. El Anbari and Mkhadri (2014) explained
though experimental studies that elastic net seems to be slightly less reliable if the
correlation between explanatory variables is not so extreme (i.e. |ρ| ≤ 0.95).

In this paper, an adjusted of the elastic net (AEN) and its adaptive adjusted elas-
tic net (AAEM), are proposed to take into account the small and medium correlation
between explanatory variables and to provide the consistency of the variable selection
simultaneously. The remainder of this paper organizes as follows. Section 2 covers the
penalized Poisson regression methods. Description of the AEN and AAEM is explained
in section 3. Sections 4 and 5 are devoted to simulation study and results. While section
6 covered the real data analysis. We end this paper with a conclusion in section 7.
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2 Penalized Poisson Regression Model

Poisson regression models have received much attention in econometrics and medicine
literature as model for describing count data that assume integer values corresponding
to the number of events occurring in a given interval. The Poisson regression model is
the most basic model, where the mean of the distribution is a function of the explanatory
variables. This model has the defining characteristic that the conditional mean of the
outcome is equal to the conditional variance (Algamal, 2012; Algamal and Lee, 2015).
A procedure called penalization, which is always used in variables selection in high
dimensional data, attaches a penalty term Pλ(β) to the log-likelihood function to get a
better estimate of the prediction error by avoid overfitting. Recently, there is growing
interest in applying the penalization method in the Poisson regression models. Friedman
et al. (2010) developed an efficient algorithm for the estimation of a generalized linear
model including Poisson regression with a convex penalty. Hossain and Ahmed (2012)
proposed Stein-type shrinkage estimator for the parameters of Poisson regression model.
Wang et al. (2014) proposed a combination of minimax concave and ridge penalties and
a combination of smoothly clipped absolute deviation and ridge penalties.

In Poisson regression model, the number of events yi has a Poisson distribution with a
conditional mean that depends on individual characteristics according to the structural
model.

f(yi) =
e−θiθi

yi

yi!
, yi = 0, 1, ...; i = 1, 2, ..., n (1)

and the conditional mean parameter

θi = exp(xi
′β) (2)

Under the assumption of independent observations, the log-likelihood function is given
by

`(β) =
n∑
i=1

{
yixi

′β − exp(xi
′β)− ln yi!

}
(3)

The penalized Poisson regression (PPR) is defined as

PPR = `(β) + λP (β) (4)

where λ is defined as a tuning parameter (λ ≥ 0). It controls the strength of shrinkage
the explanatory variables, when λ takes larger value, more weight will be given to the
penalty term. Since the value of λ is depends on the data, it can be computed using cross-
validation method (Fan and Tang, 2013; James et al., 2013). Before solving the PPR, it
is worth to make standardization to xj , so that, 1

n

∑n
i=1Xij = 0, and

∑n
i=1X

2
ij = 1 for

j = 1, 2, ..., k. This is to make the intercept (β0) equals zero.

The LASSO for the Poisson regression model was originally proposed by Park and
Hastie (2007). This technique is in some sense similar to ridge regression but it can



Electronic Journal of Applied Statistical Analysis 239

shrink some coefficients to zero, and thus can implement variable selection. The LASSO
method estimates the coefficients by minimizing the negative log-likelihood with the
constraint that the sum of the absolute values of the model coefficients is bounded
above by some positive number. The LASSO estimator is

β̂LASSO = arg min
β

−`(β) + λ
k∑
j=1

|βj |

 (5)

where λ ≥ 0 is the tuning parameter. For large values of λ, Eq. (5) produces shrunken
estimates of the β and sets some variables to equal zero.

The elastic net estimator which proposed by Zou and Hastie (2005) is a combination
between the ridge and the lasso penalty. The second term (ridge penalty) encourages
highly correlated variables to be averaged, while the first term (the LASSO penalty)
encourages a sparse solution in the coefficients of these average variables. The elastic
net estimator for Poisson regression model is

β̂Elastic = arg min
β

−`(β) + λ1

k∑
j=1

|βj |+ λ2

k∑
j=1

|βj |2
 (6)

As we observe from Eq. (6), elastic net estimator is depended on non-negative two
tuning parameters λ1, λ2 and leads to penalized Poisson regression solution. However,
elastic net performs well when the pairwise correlations between variables are very high.
El Anbari and Mkhadri (2014) stated that if the absolute correlation between genes is
less than 0.95, elastic net may be slightly less reliable. Moreover, elastic net does not
take into account the correlation structure among variables (Zhou, 2013). Additionally,
it was pointed out by Zou and Zhang (2009) that the elastic net fails in terms of achieving
oracle property, although the grouping effect problem for elastic net remains. As a result,
adaptive elastic net was introduced by Zou and Zhang (2009) and Ghosh (2011), which
it combines the L2-norm penalization with the adaptive LASSO.

3 Modified Elastic Net Penalty

In this section, we present our proposed modified method, AEN and AAEN, in Poisson
regression model. The main idea behind AEN is to take into account the information
about the empirical correlation of the data matrix in the L2-norm term because elastic
net does not. Suppose without loss of generality that the explanatory variables are
scaled, we define the AEN estimator as

β̂AEN = arg min
β

−`(β) + λ1

k∑
j=1

|βj |+ λ2

k−1∑
j=1

∑
j+1>j

(βj − rj,j+1βj+1)
2 + βk

2

 (7)

where λ1 and λ2 are non-negative tuning parameters. rj,j+1 is the correlation be-
tween j and p explanatory variables where p > j. The quantity (βj − rj,j+1βj+1)

2 is
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helpful to make AEN reliable if the correlation between explanatory variables is not so
extreme. The last term from Eq.(7) is greater than zero for any vector β. Therefore,
(rj,j+1)

′(rj,j+1) represents a Choleskys decomposition. After suitable data argumenta-
tion, Eq. (7) is equivalent to a LASSO. The AEN was solved using coordinate descent
optimization (Friedman et al., 2010) which a computationally efficient method for solv-
ing this type of convex optimization problem. The optimal AEN model was found by a
grid search over the parameters λ1 and λ2.

Furthermore, the adaptive version of AEN, AAEN, is defined by

β̂AAEN = arg min
β

−`(β) + λ1

k∑
j=1

wj |βj |+ λ2

k−1∑
j=1

∑
j+1>j

(βj − rj,j+1βj+1)
2 + βk

2


(8)

where

wj = (1/|β̂j(AEN)|)γ , j = 1, 2, ..., p (9)

where γ > 0. For simplicity, γ = 1 was used for both simulation study and real data
application.

4 Simulation Study

In this section, simulation studies are used to investigate the performance of the pro-
posed AEN and AAEN. Furthermore, we compare AEN and AAEN with elastic net.
In all simulations the response variable was generated from Poisson distribution with
conditional mean θi. All simulation cases are replicate 50 times. For every simulation
case and in each replication we generate training, validation, and testing data. The
training data were used for model fitting. The validation data were used to determine
the tuning parameters. The testing data were used to evaluate the penalization meth-
ods. For each case, the observation numbers of the corresponding data sets are denoted
by training/validation/testing. Based on the simulated data, we used three metrics to
evaluate all penalization methods which were studied in this paper, mean-squared errors
for the test data (MSEt), hits which stands for the number of correctly identified true
variables, and false positive (FP) which denotes to the number of zero variables which
are wrongly considered as true variables.

Since we investigate a penalization method with both variable selection and grouping
property, we use simulation scenario with different values of the correlation and differ-
ent numbers of training, validation, and testing observations. Simulation Scenario: In
this setting, we generate data sets with sample sizes 200/200/400 and 100 explanatory
variables. Four cases are studied. The grouping effects were generated as follows

Group1 : xi = w1 + εi, w1 ∼ N(0, 1), i = 1, 2, 3

Group2 : xi = w2 + εi, w2 ∼ N(0, 1), i = 4, 5, 6
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Group3 : xi = w3 + εi, w3 ∼ N(0, 1), i = 7, 8, 9

Furthermore, the noisy explanatory variables were generated as xi ∼ N(0, 1), i =
10, 11, ...., 100.

Case A: In this case we set εi ∼ N(0, 0.01), i = 1, 2, ..., 9. The correlations
among variables within each group are 0.98. The true variables parameters were β =
(0.3, ...., 0.3,︸ ︷︷ ︸

9

0, ...., 0︸ ︷︷ ︸
91

).

Case B: This simulation is like case A except that εi ∼ N(0, 0.6), i = 1, 2, ..., 9.
Thus, there are correlations within each group around 0.7.

Case C: Similar to case A, we set εi ∼ N(0, 0.8), i = 1, 2, ..., 9 in order to get
correlations within each group equal 0.5.

Case D: Similar to previous cases, in order to get correlations within each group
equal 0.3. We assume that εi ∼ N(0, 1.5), i = 1, 2, ..., 9.

5 Simulation Results

To examine the performance of the AEN and AAEN penalties we compare it with
elastic net. For the tuning parameters of elastic net, AEN, and AAEN, a prior value
of is required to transform the original training data set to the new augmented training
data set. A sequence of values for λ2 is given, where 0 ≤ λ2 ≤ 100. The mean-squared
error for the training data (MSEtrain) is computed as the criterion of evaluation. Figure
1 displays the corresponding boxplots of the MSEtrain for the three used methods for the
four cases. It is clearly seen that AEN and AAEN has less variability comparing with
elastic net. Also, it can be seen that AEN and AAEN are slightly similar.

Figure 1: Comparison of median MSEtrain for three methods

Table 1 summarizes the median MSEt and the standard deviation (Std. Dev.) of
the median MSEt which estimated by using bootstrap with B = 100 resampling on 50
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MSEt values. In addition, the median number of hits and FP are reported too. In
each case, the bold font indicates the best method on MSEt, Std. Dev., hits, and FP.
Table 1 reveals that the AAEN method produces considerably smaller median MSEt

and standard deviation among all methods in all cases. For example, in case B the
median MSEt of AAEN is 6.967 with standard deviation equals to 2.521 which is smaller
than 7.299 (2.615) and 7.509 (2.745) for AEN and elastic net methods respectively.
Furthermore, the reduction of MSEt is usually substantial compared to elastic net. For
example, the reduction of AEN in case A, case B, case C, and case D is 0.67%, 1.60%,
5.01%, and 6.60% respectively. Moreover, in case A, there is high pairwise correlation
among variables. Elastic net is supposed to have the best performance then AEN because
elastic net deals with extremely highly correlations. In addition, our method performs
well in terms of MSEt when the correlation is small and medium. Besides, from the
simulation results we can observe that elastic net came the last method.

Table 1: Comparison among methods over 50 replications for the four cases

MSEt(Std. Dev.) Hits False Positive Length

ρ = 0.98

Elastic net 4.931 (1.378) 4.5 14 18.5

AEN 4.887 (1.369) 9 13 22

AAEN 4.811 (1.294) 9 13 22

ρ = 0.7

Elastic net 7.509 (2.745) 7 13 21

AEN 7.299 (2.615) 8 13 20

AAEN 6.967 (2.521) 8 12 20

ρ = 0.5

Elastic net 6.874 (2.414) 6.5 12.5 19

AEN 6.787 (1.889) 7 11 18

AAEN 6.483 (1.527) 7.5 10 17.5

ρ = 0.30

Elastic net 6.742 (2.637) 7 16 23

AEN 6.663 (2.152) 7 15 22

AAEN 6.271 (2.113) 7.5 12.5 20

For variable selection accuracy, the penalization methods should include all important
variables (non-zero variables), hits and FP were used to measure the performance of
AAEN, AEN, and elastic net in term of selecting the non-zero variables. From Table
1 both AAEN and AEN succeed in selecting the true non-zero variables in most of the
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cases in term of hits. For example, AEN selects the all nine non-zero variables in case A.
Moreover, when the correlation coefficient varies from small, medium, to extremely high
correlation elastic net selects less non-zero variables comparing to AAEN and AEN. We
can expect such a result because elastic has its limitation in biased selection. In term of
FP, AAEN and AEN method usually selects less ineffective variables than elastic net in
most cases. To this end, it is obvious from our simulation results that the AAEN and
AEN methods perform better in term of MSEt by obtaining smaller values, hits, and
FP followed by elastic net for small, medium, and extremely high correlation and has
greater advantage of variable selection with grouping effects in Poisson regression model.

6 Real Data Results

To evaluate our proposed method in the field of count data model, The real dataset which
belong to the study of the distribution of freshwater mussels was taken from Sepkoski
and Rex (1974). The study aims at the estimation of the numbers of species of mussels
in 41 rivers in US by various explanatory variables. The nine explanatory variables are:
area, number of stepping stones (intermediate rivers) to 4 major species-source river
systems (Alabama-Coosa (AC), Apalachicola (AP), St. Lawrence (SL), and Savannah
(SV)), nitrate concentration, hydronium concentration, and solid residue.

In order to enable a fair comparison, typically, the dataset was randomly partitioned
into a training dataset, which comprised 70% of the samples, and a test dataset, which
consisted of 30% of the samples. The partition repeated 50 times. In order to get the
best value of the pair (λ1, λ2), the 10-fold CV was employed using the training dataset.
All the applications were conducted in R using the glmnet package. Table 2 shows the
median number of explanatory variables selected by each of the AAEN, AEN, and elastic
net in the test data set, and the corresponding median MSEt. It can be seen that AAEN
performs best in term of prediction error where the MSEt of the AAEN is approximately
0.66% lower than AEN and 5.37% lower than elastic net. Moreover, AAEN selects less
explanatory variables than the other two methods.

Table 2: Comparison among methods for the real dataset

Methods MSEt No. of selected variables

Elastic net 9.817 6

AEN 9.351 6

AAEN 9.289 5
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7 Conclusion

A study of adjusted elastic net was proposed by applying on Poisson regression model.
AAEN and AEN with elastic net were compared by using simulation studies and real
data application. Both the simulation and real data results show that the AAEN and
AEN are outperforming the elastic net in term of MSEt of test data and variable selection
accuracy. We can conclude that AAEN and AEN more reliable for grouping effects when
there are broader ranges of correlation between variables in applying penalized Poisson
regression model.
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