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Pareto processes are more suitable for time series with heavy tailed marginals
than the classical gaussian. Here we consider the Lawrence-Lewis Pareto pro-
cess. In particular, we analyze long-range and local dependence and compute
some extremal measures. This will provide us some more diagnostic tools and
new estimators for the autoregressive parameter of the process. Based on a
simulation study we will see that the new methods may be good alternatives
in what concerns robustness.
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1 Introduction

Time series presenting large peaks are potentially well modeled by ARMA with heavy
tailed innovations. When replacing the addition operator of the ARMA processes by
geometric multiplication or minimization/maximization, we arrive at simpler models
to work on under an extremal approach. In Pareto families of distributions we find
closeness under geometric multiplication or minimization, as well as, Fréchet ones may
be closed under maximization. These properties are the basis on the construction of,
respectively, autoregressive Pareto and max-autoregressive MARMA processes. Appli-
cations and properties of MARMA processes are largely addressed in literature; Davis
and Resnick (1989), Alpuim (1989), Alpuim and Athayde (1990), Lebedev (2008), Fer-
reira and Canto e Castro (2010), Ferreira (2012a), Ferreira (2012b), Ferreira and Ferreira
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c©Università del Salento
ISSN: 2070-5948
http://siba-ese.unisalento.it/index.php/ejasa/index



Electronic Journal of Applied Statistical Analysis 69

(2013) and references therein. The Pareto processes are not so well-known, in particular,
in extreme values theory. A survey on these processes can be found in Arnold (2001);
see also Yeh et al. (1988), Ferreira (2012b) and Carcea and Serfling (2015).

In this paper we consider the classical Lawrence-Lewis Pareto process given in Arnold
(2001), whose marginals are distributed as classical Pareto, i.e, the distribution function
(df) F is of the form:

F (x) = 1− (x/σ)−α,

with α > 0 and x > σ > 0, and denoted Pareto(I)(σ, α). Reference (Arnold, 1985) pro-
vides a broad survey on the Pareto distribution and their generalizations. Our analysis
is in the scope of extreme values. More precisely, we will see that it entails clustering of
high levels, a typical feature in applications concerning risk analysis. The usual correla-
tion misleads the dependence structure within a heavy tailed process, once linear depen-
dence can not suitably accounts for the whole series, including the outlying observations.
Moreover, it is not always defined since second moments may not exist. Therefore, a
tail dependence measure which, roughly stated, describes the limiting proportion that
one marginal exceeds a large value given that the other marginal has already exceeded
it too, is more appropriate. We will derive the tail dependence coefficient as given in Joe
(1997), applied to random pairs of the process which are lag−m apart. These topics are
developed in Section 2. Estimators for the autoregressive parameter of the process will
be derived trough the association with the fluctuation probabilities derived in Arnold
(2001) and the measures of clustering and tail dependence presented here. A simulation
study is conducted to compare the methodologies. In order to evaluate the sensitivity
of the estimators to the model assumptions, we also compare their performances for
processes {Xn}n≥1 perturbed by the presence of a white noise {Zn}n≥1, i.e., where each
marginal of the “noisy” process is given by Xn + ζZn, ζ > 0. This will be addressed in
Section 3.

2 Main Results

The Lawrence-Lewis Pareto(I) process, in short LLP(I)(1), is given by

Xn = X1−Un
n−1 σUnεpn, n = 1, 2, . . . , (1)

where {Un}n≥1 is an independent and identically distributed (iid) sequence of random
variables (rv’s) Bernoulli(p), and the innovations sequence {εn}n≥1 is an iid sequence of
rv’s Pareto(I)(1, α). By considering X0 ∼Pareto(I)(σ, α), then Xn ∼Pareto(I)(σ, α) for
n ≥ 1 and thus the process is stationary. Observe that larger values of p correspond to
larger probability on the occurrence of the innovations an thus less dependence within
the process. In the sequel we denote FX the marginal df of the process and Fε the
marginal df of the innovations sequence. Sample paths simulated from the LLP(I)(1)
process with σ = α = 1 and p = 0.25, 0.5, 0.75 are displayed in Figure 1.

The logarithm of this process leads to the NEAR(1) processes of Lawrance and Lewis
(1981) where the marginals are exponential. The LLP(I)(1) process is little known in
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Figure 1: Simulated sample paths of LLP(I)(1) processes with marginals Pareto(I)(1, 1)
for p = 0.25 (left), p = 0.5 (middle) and p = 0.75 (right).

literature. It was introduced in the monograph of Arnold (2001), where some properties
were presented, namely the fluctuation probability and the autocorrelation function (only
defined for α > 2), as will be seen below.

The fluctuation probability, f1, is given by

f1 := P (Xn−1 < Xn) =
1

1 + p
(2)

and may be used in a modeling framework.
In order to deal with probabilities of events involving multiple marginals, we derive

the transition probability function (tpf):

Q(x, ]σ, y]) := P (X2 ≤ y|X1 = x)

=


Fε

(( y
σ

)1/p)
p+ Fε

((y
x

)1/p)
(1− p) , y > x

Fε

(( y
σ

)1/p)
p , y ≤ x.

Moreover, for each positive integer m, the m-steps tpf is given by

Qm(x, ]σ, y]) := P (X1+m ≤ y|X1 = x)

=



m∑
k=1

F∏k
i=1 εi

(( y
σ

)1/p)
p(1− p)k−1 + F∏m

i=1 εi

((y
x

)1/p)
(1− p)m , y > x

m∑
k=1

F∏k
i=1 εi

(( y
σ

)1/p)
p(1− p)k−1 , y ≤ x,

where

F∏k
i=1 εi

(x) = 1− x−α
k∑
j=1

(log xα)k−j

(k − j)!
. (3)
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A Pareto-type distribution F is of the form

F (x) = 1− x−αL(x),

with α > 0 and where L(x) is a slowly varying function (i.e. L(tx)/L(x)→∞ as x→∞,
for every t > 0). Observe that F∏k

i=1 εi
(x) in (3) is a Pareto-type distribution.

In order to study the extremal behavior of the LLP(I)(1) process we will analyze some
long-range and local dependence conditions.

First, we will show that the β-mixing condition holds. This is a slightly stronger
condition than strong-mixing which basically states that the realization of two rv’s tends
to be independent as they are getting increasingly separated in time. A stationary
sequence {Xi}i≥1 is said to be β-mixing if

β(l) := sup
p∈N

E
(

sup
B∈F(Xp+l+1,...)

|P (B|F(X1, ..., Xp))− P (B)|
)
−→
l→∞

0,

with F(.) denoting the σ−field generated by the indicated random variables.

Proposition 2.1. The LLP(I)(1) process is β-mixing.

Proof. We state the β-mixing condition by proving that the process is regenerative and
aperiodic (Asmussen, 2008).

In what concerns regeneration we will see that it has a regeneration set R, i.e., a
recurrent set R such that, for some m ∈ N, a distribution ψ and δ ∈ (0, 1), we have

Qm(x,B) ≥ δ ψ(B), x ∈ R,

for all real borelian B. The process is aperiodic if, for any regeneration set R and any
real borelian B, we have

Qm+1(x,B) ≥ δ1 ψ(B) and Qm(x,B) ≥ δ2 ψ(B), ∀x ∈ R, (4)

for some m ∈ N and δ1, δ2 ∈ (0, 1).
Let R =]r,∞[⊂]σ,∞[ and B a real borelian set. We have that R is recurrent since it

is in the support of the process. Consider x ∈ R, S =]0, r] and W ∼Pareto(α/p, σ). For
all x ∈ R,

Q(x,B) ≥
∫
B∩S

dQ(x, z) = P (W ∈ B ∩ S)p

and thus regeneration holds by considering m = 1, ψ(B) = P (W ∈ B ∩ S) and δ = p.
For aperiodicity, see that

Q2(x,B) ≥
∫
S
pP (W ∈ B)Q(x, dz) ≥ pP (W ∈ B∩S)Q(x, S) = pP (W ∈ B∩S)pP (W ∈ S)

and thus (4) holds with δ1 = pP (W ∈ S) and δ2 = δ.
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If we consider a mixing condition but only required to hold for events of the form
{Xi ≤ un} or their intersections, we arrive at the weaker long-range dependence condi-
tion D(un) of Leadbetter (1974), for any real sequence {un}n≥1. In stationary sequences
satisfying the dependence condition D(un), it is possible to watch some clustering phe-
nomena of high values and a dependence parameter known as extremal index arrives in
this context. Formerly, a stationary sequence {Xn}n≥1 has extremal index θ ∈ [0, 1] if,

for each τ > 0, there is a sequence of normalized levels {un ≡ u(τ)n }n≥1, i.e.,

n(1− F (un))→ τ, (5)

as n→∞, such that

P (Mn ≤ un)→ e−θτ

(Leadbetter et al., 2012). Parameter θ is a measure associated with the degree of clus-
tering. More precisely, under quite general conditions it corresponds to the arithmetic
inverse of the cluster size. In particular, a unit value of θ means a behavior that mim-
ics an iid sequence where we have an isolated occurrence of high values and thus no
clustering phenomena.

Local dependence conditions D(k)(un) considered in Chernick et al. (1991), allow us
to compute the extremal index by

θ = lim
n→∞

P (M2,k ≤ un|X1 > un), (6)

where Mi,j = max(Xi, . . . , Xj) and un are normalized levels, i.e., satisfy (5).
Condition D(k)(un) is said to hold for {Xn}n≥1 if, under condition D(un), we have

nP (X1 > un,M1,k ≤ un < Mk,rn) −→
n→∞

0,

with {rn = [n/kn]}n≥1, where [x] denotes the integer part of x, for some sequence
{kn}n≥1 satisfying

kn →∞, knαn,ln → 0, knln/n→ 0,

as n→∞. This is implied by condition

n

rn∑
j=k+1

P (X1 > un,M1,k ≤ un < Xj) −→
n→∞

0 , (7)

which corresponds to condition D′(un) of Leadbetter et al. (2012) if k = 1 and condi-
tion D′′(un) of Leadbetter and Nandagopalan (1989) if k = 2. The first enables local
clustering of exceedances of large values, corresponding to θ = 1, and the second allows
local clustering of exceedances but restricts upcrossings.

We will show that D′′(un) condition is satisfied by LLP(I)(1) processes.

Proposition 2.2. Condition D′′(un) holds for process LLP(I)(1), for levels un satisfying
(5).
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Proof. We have,

P (X1 > un, Xj ≤ un < Xj+1)

= P (X1 > un, Xj ≤ un)

(
1− Fε

((un
σ

)1/p))
p

+

∫ ∞
1

P
(
X1 > un, Xj ≤ un, Xj >

un
xp

)
Fε(dx) (1− p)

≤ (1− FX(un))

(
1− Fε

((un
σ

)1/p))
p︸ ︷︷ ︸

I1

+

∫ ∞
1

∫ ∞
un

Qj−1
(
y,
]un
xp
, un

])
FX(dy)Fε(dx) (1− p)︸ ︷︷ ︸

I2

.

Observe that

I1 = (1− FX(un))

(
1− Fε

((un
σ

)1/p))
p = O

(
1

n1/p+1

)
.

In what concerns the second term, by the dominated convergence theorem, we have
successively

I2 ≤
∫ ∞
1

∫ ∞
un

(
1−Qj−1

(
y,
]
σ,
un
xp

]))
FX(dy)Fε(dx) (1− p)

≤
∫ ∞
1

∫ ∞
un

[
1− F∏k

i=1 εi

(( un
xpσ

)1/p)]
FX(dy)Fε(dx) (1− p)

. (1− FX(un))

∫ ∞
1

[
1− Fε

( un
xpσ

)]
Fε(dx) (1− p)

= O
(
τ
n2

)
.

Therefore,

n

rn−1∑
j=2

P (X1 > un, Xj ≤ un < Xj+1) ≤ O
(

1

knn

)
.

In the next result we will see that the degree of clustering in the LLP(I) process
depends on the parameter p.

Proposition 2.3. The LLP(I)(1) process has extremal index θ = p.
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Proof. By the Chernick et al. (1991) result in (6), we have

θ = lim
n→∞

P (X2 ≤ un|X1 > un),

with un ∼ (n/τ)1/ασ, n ≥ 1, since the quantile function is

F−1X (t) = σ(1− t)−1/α.

Observe that

P (X2 ≤ un, X1 > un) =

∫ ∞
un

Q(x, ]σ, un])FX(dx) = Fε

(( y
σ

)1/p)
p(1− FX(un))

and thus

θ = lim
n→∞

(
1−

( τ
n

)1/p)
p = p.

Dependence measures like autocorrelation, based on the central part of the series and
usually considered in the modeling from linear ARMA, may not be defined and poorly
describe the dependence for large levels (see Embrechts et al. (2002)). In the LLP(I)(1)
process, the autocorrelation is derived as (Arnold, 2001)

ρ(Xn−1, Xn) = −(1− p)α
α− p

(8)

and the negative sign may be a useful tool in diagnosing the suitability of a LLP(I)(1)
process to describe a given time series. Nevertheless, it is only defined for α > 2.

Alternatively, we can use tail dependence measures as the lag-m tail dependence
coefficient,λm, defined by

λm = lim
t↓0

P (X1+m > F−1X (1− t)|X1 > F−1X (1− t)),

and thus analyze the probability of X1+m being extreme given that X1 is extreme too.
We have X1 and X1+m asymptotically independent if λm = 0, and asymptotically depen-
dent if 0 < λm ≤ 1, with the boundary cases λm = 1 and λm ∼ P (X1+m > F−1X (1− t))
corresponding to complete dependence and independence, respectively. Under slightly
weaker conditions than (7), we can express the extremal index θ in terms of coefficients
λm. In particular, under D′′(un), we have θ = 1 − λ1 (Ferreira and Ferreira (2012),
Proposition 4).

Proposition 2.4. The LLP(I)(1) process has lag-m tail dependence coefficient λm =
(1− p)m.
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Proof. Let at = F−1X (1− t). We shall consider m = 3, but the proof runs along the same
lines for any value of m. We have

P (X1 > at, X4 > at) =
∫∞
at

(1−Q3(x, ]σ, at]))FX(dx)

=
[
1− Fε(t−1/(αp))p− Fε1ε2(t−1/(αp))p(1− p)− Fε1ε2ε3(t−1/(αp))p(1− p)2

]
(1− FX(at)).

Therefore,

λ3 = lim
t↓0

[
1− (1− t1/p)p− (1− t1/p)p(1− p)− (1− t1/p)p(1− p)2

]
= (1− p)3.

We state the following result relating the several measures and thus providing addi-
tional diagnostic tools for modeling purposes.

Corollary 2.5. In the LLP(I)(1) process, we have

a) θ = 1
f1
− 1;

b) λ = 2− 1
f1

.

.

3 Estimation

Measures like the fluctuation probabilities, the extremal index and the TDC are related
with the parameter p, and thus provide direct estimation procedures.

Based on (2), we have

p =
1

f1
− 1, f1 ≥ 1/2.

If we replace f1 by the respective empirical counterpart

f̂1 =
1

n− 1

n∑
j=2

1{Xj−1<Xj},

where 1{·} denotes the indicator function, we have

p̂FP =
1

f̂1
− 1 =

n− 1∑n
j=2 1{Xj−1<Xj}

− 1,

provided that f̂1 ≥ 1/2. This restriction may be an indicator of an unappropriate choice
of the model.
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Unrestricted estimators will be derived from the extremal measures, whose inference
concerns only the large values and ignores the rest of the data.

For the extremal index θ, we consider the estimator of Nandagopalan (1990) which
works under condition D′′(un):

θ̂ =
Cn(u)

Nn(u)
,

where Cn(un) and Nn(un) are, respectively, the number of downcrossings and the number
of exceedances of a high threshold u. Therefore,

p̂EI ≡ p̂EIu =
Cn(u)

Nn(u)
. (9)

The estimator of the TDC that we apply corresponds to the empirical counterpart of
λ1, considered in Schmidt and Stadtmüller (2006):

λ̂ ≡ λ̂u =
N∗n(u)

Nn(u)
, (10)

whereN∗n(u) denotes the number of exceedances of a high threshold u among min(Xj , Xj+1),

j = 1, . . . , n− 1. We consider p̂TDC ≡ p̂TDCu = 1− λ̂u.
In reality, it may happens that the data do not exactly satisfies the functional equation

(1) but some arbitrarily close formula. Here we consider “noisy” processes of the form

X
(ζ)
n = Xn+ζZn, n ≥ 1, where {Zn}n≥1 is an iid sequence of standard Gaussian rv’s and

ζ > 0, in order to analyze the sensitivity of the estimators to these perturbed versions.
Our simulation study consists in 1000 samples of size n = 1000 drawn from the

LLP(I)(1) model by considering marginals Pareto(I)(σ, α), with σ = 1 and α = 1, and
taking p = 0.25, 0.5, 0.75. The results are compared in terms of root mean squared error
and absolute bias and are placed in Tables 1 and 2, including the case of the “noisy”

processes {X(ζ)
n }n≥1 for ζ = 1, 0.1. Estimator p̂FP is the best for simple LLP(I)(1)

processes but it is not robust for noisy versions, particularly for lower values of p which
corresponds to larger dependence within the process, besides restricted to f̂1 ≥ 1/2. On
the other hand, the estimators based on the tail, p̂TDCu and p̂EIu , are robust, with the
best results attained for quantile u = 0.8, except in the case p = 0.75.
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Table 1: Root mean squared errors obtained for the LLP(I)(1) process (ζ = 0) and for
noisy versions (ζ = 1, 0.1).

p = 0.25 ζ = 0 ζ = 0.1 ζ = 1

p̂FP - - -

p̂TDCq0.95 0.063 0.063 0.071

p̂TDCq0.8 0.032 0.032 0.063

p̂EIq0.95 0.063 0.063 0.071

p̂EIq0.8 0.032 0.032 0.063

p = 0.5 ζ = 0 ζ = 0.1 ζ = 1

p̂FP 0.032 0.063 0.263

p̂TDCq0.95 0.071 0.071 0.071

p̂TDCq0.8 0.032 0.032 0.032

p̂EIq0.95 0.071 0.071 0.071

p̂EIq0.8 0.032 0.032 0.032

p = 0.75 ζ = 0 ζ = 0.1 ζ = 1

p̂FP 0.032 0.045 0.126

p̂TDCq0.95 0.055 0.055 0.055

p̂TDCq0.8 0.089 0.089 0.084

p̂EIq0.95 0.063 0.063 0.063

p̂EIq0.8 0.095 0.095 0.089
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Table 2: Absolute biases obtained for the LLP(I)(1) process (ζ = 0) and for noisy ver-
sions (ζ = 1, 0.1).

p = 0.25 ζ = 0 ζ = 0.1 ζ = 1

p̂FP - - -

p̂TDCq0.95 0.026 0.027 0.032

p̂TDCq0.8 0.004 0.005 0.047

p̂EIq0.95 0.012 0.013 0.018

p̂EIq0.8 0.002 0.003 0.045

p = 0.5 ζ = 0 ζ = 0.1 ζ = 1

p̂FP 0.001 0.056 0.261

p̂TDCq0.95 0.02 0.019 0.021

p̂TDCq0.8 0.016 0.015 0.001

p̂EIq0.95 0.011 0.011 0.012

p̂EIq0.8 0.018 0.017 0.001

p = 0.75 ζ = 0 ζ = 0.1 ζ = 1

p̂FP 0 0.025 0.123

p̂TDCq0.95 0.007 0.007 0.007

p̂TDCq0.8 0.086 0.086 0.081

p̂EIq0.95 0.012 0.012 0.011

p̂EIq0.8 0.087 0.087 0.082
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4 An application to financial series

Financial data often present heavy tailed marginals. Volatility within stock market in-
dexes is usually characterized by sudden large atypical observations and thus better
modeled by heavy tailed processes like Pareto ones. We consider the daily closing values
of the FTSE100 index from January 1980 to March 2004. Volatility can be measured
through the absolute values of the log-returns (the difference between the logarithms
of successive daily prices), or equivalently, through the squared log-returns. In Figure
2 is plotted the time series of both log-returns and squared log-returns (volatility), re-
spectively. Observe that volatility presents bursts of high peaks similar to LLP(I)(1)
sample paths in Figure 1. In order to assure that our data is likely to be modeled with
Pareto marginals (for instance, the observations are not in the support [1,∞[), we con-
ducted a robust regression and obtained scale and location estimates, approximately,
11560 and 1 (see the resulting Pareto quantile-quantile plot in Figure 3). From now on
we address the transformed data, denoted Xi, i = 1, . . . , n = 3596. First we estimate
the weight of the tail, i.e., the shape parameter α. We consider the Hill estimator,
α̂−1 = k−1

∑k
i=1 log(Xn−i+1:n/Xn−k:n), k = 1, . . . , n − 1, based on the k + 1 top order

statistics (Hill et al. (1975)), whose sample path is in Figure 3 (right). The estimate is
inferred from a flat region sought after the high variability in the beginning of the path
due to the small amount of observations that are being used, but not to far from the
tail where the bias starts to dominate. We can find some stability around 0.5 and also
around 0.6 leading to an estimate of α, respectively, about 2 and 1.67. The autocorrela-
tion function in (8) is only stated for α > 2. Since we cannot guarantee this condition,
we do not proceed in this pathway. Now we estimate parameter p. We used estimator
p̂EI in (9) and obtained p̂EIq0.80 = .50 and p̂EIq0.95 = 0.60. The estimator p̂FP was not con-
sidered since it is very sensitive to noisy processes, a more realistic assumption in real
data. Computing estimates of λ̂ in (10), lead us to 1− λ̂q0.80 = 0.54 and 1− λ̂q0.95 = 0.65,
which approximately comprises the relation λ = 1 − p, a characterizing feature of this
process.
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Figure 2: From left to right: Log-returns and squared log-returns (volatility) of the
FTSE100 index from January 1980 to March 2004, amounting a sample of
size 3596.
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Figure 3: From left to right: Pareto quantile-quantile plot and sample path of Hill esti-
mator of α−1 of the transformed data.

5 Discussion

The extremal approach presented in this paper provides new methods concerning infer-
ence within the LLP(I)(1) processes, namely, estimators for the autoregressive parameter
p valid in all of the domain [0, 1]. As observed in Arnold (2001), these processes are po-
tentially suitable for variables of economic nature. We intend to pursue on an extreme
values scope to develop modeling technics similar to Ferreira and Canto e Castro (2010)
and apply to real data.



Electronic Journal of Applied Statistical Analysis 81

Acknowledgement

The author research was supported by the Research Center CEMAT through the Project
UID/Multi/04621/2013.

References

Alpuim, M. T. (1989). An extremal markovian sequence. Journal of Applied Probability,
26(2):219–232.

Alpuim, M. T. and Athayde, E. (1990). On the stationary distribution of some extremal
markovian sequences. Journal of Applied Probability, 27(2):291–302.

Arnold, B. C. (1985). Pareto distribution. Wiley Online Library.

Arnold, B. C. (2001). Pareto processes. In Stochastic Processes: Theory and Methods,
volume 19 of Handbook of Statistics, pages 1–33. Elsevier.

Asmussen, S. (2008). Applied probability and queues, volume 51. Springer Science &
Business Media.

Carcea, M. and Serfling, R. (2015). A gini autocovariance function for time series mod-
elling. Journal of Time Series Analysis, 36(6):817–838.

Chernick, M. R., Hsing, T., and McCormick, W. P. (1991). Calculating the extremal
index for a class of stationary sequences. Advances in Applied Probability, 23(4):835–
850.

Davis, R. A. and Resnick, S. I. (1989). Basic properties and prediction of max-arma
processes. Advances in Applied Probability, 21(4):781–803.

Embrechts, P., McNeil, A., and Straumann, D. (2002). Correlation and dependence in
risk management: properties and pitfalls. Risk management: value at risk and beyond,
pages 176–223.

Ferreira, M. (2012a). On the extremal behavior of a pareto process: an alternative for
armax modeling. Kybernetika, 48(1):31–49.

Ferreira, M. (2012b). Parameter estimation and dependence characterization of the
mar(1) process. ProbStat Forum, 5(12):107–111.

Ferreira, M. and Canto e Castro, L. (2010). Modeling rare events through a prarmax
process. Journal of Statistical Planning and Inference, 140(11):3552–3566.

Ferreira, M. and Ferreira, H. (2012). On extremal dependence: some contributions. Test,
21(3):566–583.

Ferreira, M. and Ferreira, H. (2013). Extremes of multivariate armax processes. Test,
22(4):606–627.

Hill, B. M. et al. (1975). A simple general approach to inference about the tail of a
distribution. The Annals of Statistics, 3(5):1163–1174.

Joe, H. (1997). Multivariate models and multivariate dependence concepts. CRC Press.

Lawrance, A. and Lewis, P. (1981). A new autoregressive time series model in exponential
variables (near (1)). Advances in Applied Probability, 13(4):826–845.



82 Ferreira

Leadbetter, M. R. (1974). On extreme values in stationary sequences. Probability Theory
and Related Fields, 28(4):289–303.

Leadbetter, M. R., Lindgren, G., and Rootzén, H. (2012). Extremes and related proper-
ties of random sequences and processes. Springer Science & Business Media.

Leadbetter, M. R. and Nandagopalan, S. (1989). On exceedance point processes for
stationary sequences under mild oscillation restrictions. Springer.

Lebedev, A. V. (2008). Statistical analysis of first-order marma processes. Mathematical
Notes, 83(3-4):506–511.

Nandagopalan, S. (1990). Multivariate extremes and estimation of the extremal index.
PhD thesis, University of North Carolina, Chapel Hill.

Schmidt, R. and Stadtmüller, U. (2006). Non-parametric estimation of tail dependence.
Scandinavian Journal of Statistics, 33(2):307–335.

Yeh, H.-C., Arnold, B. C., and Robertson, C. A. (1988). Pareto processes. Journal of
Applied Probability, 25(2):291–301.


