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Data collected during a survey by means of a questionnaire are, in general,
expressed with reference to a Likert type scale, giving rise to non-metric data
(ordinal categorical). However most of the statistical procedures used to an-
alyze survey data (for example FA or SEM) require at least interval scale
measures, that may be obtained for example by using proper scaling proce-
dures. In order to compare, by simulation, scaling techniques most commonly
used in the literature, we consider necessary to achieve, in advance, an appro-
priate algorithm that best reproduces the discretization process followed by
the respondents to the Likert questionnaire items. Accordingly, we propose
a discretization procedure that, starting from a continuous random variable,
describing all possible individual responses to a given stimulus, generates the
corresponding categories, choosen among a finite set of integer values.

keywords: Likert scale, continuous variables discretization.

1 Introduction

In the social and behavioral sciences responses to questionnaires items are typically col-
lected by means of the Likert-type scale format: when answering to a question, the
participants are asked to choose among a given number, say K, of ordered response
categories running, for example, from ”never” to ”very often”, usually coded with the
first K integer numbers. However, the statistical techniques commonly used for their
analysis (e.g. Structural Equation Models, SEM) assume data being of the metric type.
Let us suppose, for example, that we’re interested in evaluating the relationship between
an output continuous variable Y and two explanatory continuous variables X1 and X2,
measured by the regression coefficients β1 and β2 (see Fig. 1). Let also suppose that
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Figure 1: Example of a simple regression model

those variables are not directly observed, but measured by a Likert scale procedure,
giving rise to the corresponding discrete variables Ỹ1 X̃1 and X̃2, of the ordinal type.
Let us remember, with this regards, that psychometric literature on ordinal responses
conceptualizes survey observed data as being expression of continuous unobserved un-
derlying variables, whose true values lie in the mind of the specific subject: the Likert
scale operates by means of a link function giving a conventional mapping from the stim-
ula space (typically a continuous interval) to the first K integer values (discretization).
Therefore, in order to make it possible the estimation of the above mentioned regression
coefficients, a new set of variables (Y ∗, X∗1 and X∗2 ) are produced by means of a typical
quantification/scaling procedure. Such scaling/quantification procedures transform the
observed K levels, equally spaced, into a corresponding structure possessing at least the
interval scale property (see Fig. 2).

The estimation of the regression coefficients βi may so be realized through the es-
timates β∗i obtained with reference to the transformed variables. The whole process
previously introduced is summarized in the flow chart of Fig. 3.

Several proposal of quantification/scaling procedures are given in literature: see Thur-
stone (1927a,b, 1959); Torgerson (1958); Jones (1986); Zanella and Cantaluppi (2004);
Zanella and Cerri (2000) for the so-called psychometric approach; Gifi (1990), Michai-
lidis and de Leeuw (1998), Ferrari and Manzi (2010) for linear and non-linear PCA;
Manisera et al. (2007); Zani and Berzieri (2008) suggesting a trasformation based on the
mid-points of the empirical cumulative function.

In order to evaluate, by simulation, the performance of the most commonly used scal-
ing techniques, it can be useful, for example, to compare the possible bias generated
using the previously mentioned estimate β∗i . With reference to the example previously
introduced, the simulation exercise can start generating data from a continuous multidi-
mensional random variable (Y,X1, X2) with known structure of covariance corresponding
to the βi. Then, a proper discretization algorithm will be used and subsequently esti-
mates of the β∗i may be computed on data re-scaled with the different quantification
procedures under evaluation.

To come to the point, we consider necessary to have access to a suitable algorithm
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Figure 2: Structure of the relationship between original variables and the corresponding
transformed variables

Figure 3: Process flow chart: discretization (1)(2)(3); quantification/scaling (3)(4)(5)

best reproducing the discretization phase of the process followed by the respondents to
the Likert questionnaire items (see Fig. 3, steps (1) (2) (3)).

Therefore, section 2 describes the general assumptions concerning the production pro-
cess of the ordered observed variables; in section 3 the Likert scale characteristics are
considered; section 4 gives a short classifications of the discretization methods and in
section 5 an innovative algorithm is proposed.

2 Assumptions on the Ordinal Observed Variables

As previously mentioned, the task of rating asks the respondent to a questionnaire item
to select the number of the category that best represent his/her opinion on a particular
attribute, among a finite ordered set of choices.

This implies, in general, the execution of a process of reduction of the range of a
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continuous unobserved variable into a finite set of disjoint intervals identified by proper
meaningful labels.

We propose, in fact, to adopt the traditional assumptions considering the existence, for
each observed ordinal manifest variable, say Ỹ , of a corresponding underlying continuous
latent variable, say Y Bollen (2014); Bollen and Maydeu-Olivares (2007). Formally, the
observed ordinal response Ỹ with K response categories, is defined as:

Ỹ = k, if yk−1 < Y ≤ yk (k = 1, ...,K) (1)

where yk, k = 0, 1, ...,K, are thresholds defined in the domain of the underlying latent
continuum, which may be spaced at nonequal intervals, satisfying the constraints −∞ =
y0 < y1 < ... < yK−1 < yK = ∞. This approach is often reasonable in the social
sciences, in which many variables of interest are conceptually continuous, even though
the measurement instruments give data having only ordinal properties. Therefore Likert
scales represent a discretization of an underlying latent continuum.

3 Main features of Likert scales

Likert scales are positively characterized by their evident simplicity; nevertheless accord-
ing to the psychometric literature, their use generally produces the following systematic
distortion effects:

• central tendency bias, due to propensity of respondents to avoid using extreme
response categories;

• social desirability bias, deriving from the tendency of raters to portray them-
selves in the most favorable light;

• acquiescence bias, related to the agreement to statements as presented.

In particular, authors commonly share the opinion that central tendency is the effect
somewhat more problematic.

Therefore, in simulating the discretization process characterizing the Likert scale be-
haviour, one should reproduce the effects above illustrated, giving particular attention
to the first one; Greenleaf (1992); Smith and Albaum (2005).

4 Simulating the discretization process

The aim of the discretization of a continuous variable is to find a set of cut points
defining a partition of its domain into a small number, say K, of contiguous intervals,
corresponding to K categories. The discretization algorithms may be distinguished be-
tween supervised and unsupervised procedures; the latter, most commonly used, divide
the continuous range into K subranges, whose width or whose frequency (number of
instances in each interval) are specified by the user (the so-called equal-width intervals
or equal-frequency intervals). However, the unsupervised procedures may not give good
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results when the continuous distribution is not uniform or in the presence of outliers
Catlett (1991). The supervised discretization methods are typically characterized by
the following iterative process, defining the optimal solution to the problem.

1. Fix the number K of intervals

2. Choose two finite extreme values [y0, yK ] defining the finite range of the observa-
tions

3. Define a set of cut-points y1, y2, ..., yK−1

4. Evaluate a proper target function (divergence measure)

5. Iterate steps 3-5 until a stopping rule will be satisfied

6. Define the K representative values y1, y2, ..., yK summarizing each interval (tipi-
cally the conditional mean or median or simply the first K integers numbers)

Likert scoring applies the intervals into the first K integer numbers. The typical dis-
cretization procedure is outlined in the following figure 4: the continuous distribution
f(y), represented in panel (a), will be transformed into a discrete probability distribution
pk, see panel (b), by selecting the optimal partition of the range [y0, yK ] and assigning
the probabilities

pk =

∫ yk

yk−1

f(y)dy (2)

to the conventional values 1, 2, ...,K defining the generic item Xi. In order to find the

Figure 4: Discretization, panel (b), of a continuous pdf, panel (a)

optimal set of cut-points y1, y2, ..., yK−1 the following type of target function is in general
employed:

min
y1,...,yK−1

K∑
k=1

d[(f(y), pk(y)]w(y) (3)

where w(y) is a weight factor, d[·, ·] is a proper measure of divergence between the
continuous function f(y) and the step function pk(y) assuming the constant values
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pk/(yk−yk−1), k = 1, 2, ...,K in each interval, see panel (a). Observe that some quantifi-
cation procedures, dealing with the particular problem of the discretization of a contin-
uous wave signal (performing, for example, an analog to digital transformation), define
the levels of the step function together with the corresponding cut-points, so not impos-
ing constraint (2), see e.g. Max (1960); Gifi (1990).
Concerning the divergence measures d[·, ·] most frequently employed in the literature,
we can make the following, non exhaustive, list.

• Max quantizer:

d[·, ·] = [f(y)− pk(y)]2 w(y) = f(y) (4)

• Kullback Leibler (K-L):

d[·, ·] = ln[f(y)/pk(y)] w(y) = f(y) (5)

• χ2:

d[·, ·] = [f(y)− pk(y)]2/f(y) w(y) = 1 (6)

• weighted χ2:

d[·, ·] = [f(y)− pk(y)]2/f(y) w(y) = f(y) (7)

• weighted absolute value (A-V):

d[·, ·] = |f(y)− pk(y)| w(y) = f(y) (8)

Note that the χ2 divergence is naturally weighted by the factor 1/f(y); moreover the
Max quantizer criterion may be expressed as

min
y1,...,yK−1,p1,...,pK

∑
k

∫ yk

yk−1

[f(y)− pk(y)]2f(y)dy (9)

and the weighted χ2 criterion assumes the following simple expression

min
y1,...,yK−1

∑
k

∫ yk

yk−1

[f(y)− pk(y)]2dy (10)

where the weight factor f(y) reduces the presence of the implicit weight 1/f(y). Observe
that the criteria based on Max quantizer and K-L, weighted with f(y), tend to assign
higher divergences to the intervals corresponding to the higher values of f(y), possibly
giving them a narrower width. On the other hand, the χ2 criteria, using the natural
weight 1/f(y), tends to be more accurate in the tails of the distribution. Moreover,
it can be noted that A-V divergence corresponds to the square root of the weighted
χ2 criterion, further weighted by w(y) = f(y). In Gifi (1990); Manisera et al. (2007);
Carpita and Manisera (2012) the Max quantizer is used, for simulating the discretization
phases (1) (2) (3) see fig 3.
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5 The proposed discretization algorithm

Recall that, as previously stated, a discretization algorithm simulating the likert scale
process should reproduce the main peculiarity of those scales: the central tendency
bias. Then, in our opinion, a discretization algorithm should generally assign higher
probability to the intervals (classes) closer to the mode of the continuous distribution.

For this reason we decided to start the algorithm with testing the presence of the
asymmetry; then, once the total number of intervals has been fixed, choose the number
of intervals to be located to the right and to the left of the modal value. For this
reason, process the iterative phase begins from the modal class. In order to discretize
a continuous variable Y , such that P (ymin ≤ Y ≤ ymax) ' 1 the following procedure is
suggested:

• choose the number K of classes

• evaluate the range R = ymax − ymin, the mode ỹ and the median of Y

• compute h = int( |mode−median|
R/K ); when h > 0 then asymmetry exists

– if K odd then assign
(K − 1)/2 + h classes to the right of the mode
(K − 1)/2− h to the left of the mode

– if K even then assign
K/2 + h classes to the right of the mode
K/2 + h to the left of the mode

• compute f(ỹ) and fix ε > 0, an appropriate small positive tolerance value

– if K odd

∗ optimization of the modal class

∗ for j = 1, 2, ...

∗ calculate yk−1 and yk corresponding to f−1(ỹ − jε)
∗ evaluate the probability pk pertaining to the class (yk−1, yk]

∗ compute the height pk(y) = pk/(yk−yk−1) of the k-th interval of the step
function

∗ set the remaining right and left intervals to be equally spaced

∗ evaluate the divergence measure for the currently defined step function

∗ stop the j-iteration whenever the minimum divergence is reached

∗ for the optimization of the remaining intervals refer to the K even case

– if K even

∗ optimization of the right tail intervals

∗ for each interval increasingly far from the modal value
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∗ for j = 1, 2, ...

∗ calculate yk−1 and yk corresponding to f−1(yk − jε)

∗ evaluate the probability pk pertaining to the class (yk−1, yk]

∗ compute the height pk(y) of the k-th interval of the step function

∗ set the remaining right intervals to be equally spaced

∗ evaluate the divergence measure for currently defined step function rela-
tively to the right tail of the distribution

∗ stop the j-iteration whenever the minimum divergence is reached

∗ for the optimization of the lower (left) intervals repeat the previous iter-
ation substituting right with left

• the threshold values y1, y2, ..., yK−1 and the corresponding pk define the optimal
discretization setting

6 A brief comparison of six discretization procedures

In order to evaluate the performance of the proposed algorithm we give, in the following
Table 1, some essential results referring to the discretization of a continuous standard
normal distribution into a discrete one, with K = 5 classes, having fixed ymin = −3 and
ymax = 3. For sake of simplicity we restricted the comparison among four supervised pro-
cedures (Weighted χ2, A-V, Max pseudo-optimal, Max optimal) and two unsupervised
(Equally spaced intervals, Equal probability intervals), often mentioned in the literature
as a reference point. We may compare the different pk distributions, k = 1, ..., 5, with
reference to the Equally spaced one, which gives the probabilities of the std normal
corresponding to the five intervals of size 1.20 partitioning the range [−3, 3].

Table 1: Comparison of some discr. procedures (std normal distr. and K = 5 classes)

procedure 1 2 3 4 5 mid class width

Weighted χ2 .063 .103 .669 .103 .063 1.93

A-V .083 .220 .560 .220 .083 1.57

Equally spaced intervals .036 .262 .452 .262 .036 1.20

Max pseudo-optimal .100 .200 .400 .200 .100 1.04

Max optimal .107 .244 .300 .244 .107 0.76

Equal prob. intervals .200 .200 .200 .200 .200 0.50
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7 Concluding remarks

Remind, as initially stated, that a good discretization algorithm is expected to best
reproduce the Likert scale distortion effect of central tendency. For this reason we suggest
to take into account the probabilities assigned to the central classes or, equivalently, the
mid class widths. Observe that the Equally spaced interval method gives to the middle
interval a probability of 45.2%; both of Max Procedures and the Equal Probability
intervals are positioned below; on the contrary A-V and Weighted χ2 do emphasize that
level (56.0% and 66.9% respectively). In conclusion, is our opinion that the A-V criterion
looks to reproduce the central tendency bias in a satisfactory manner, avoiding, at the
same time, excessive effects.
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