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An ordinary least squares regression estimate for the slope, regardless of
its strength, can have its sign reversed through adjustment for a random
confounding vector of data. The assumption of a rotationally invariant dis-
tribution, on the space of centered, random, confounding vectors of data,
makes calculation of probabilities for these reversals possible. Here, as the
sample size increases, these probabilities are shown to decrease exponentially.
This analytic result leads to some asymptotic comparison between regular
sampling error and the error due to a mis-specified model.

keywords: least-squares, high-dimensional geometry, gamma function, com-
plementary error function, model uncertainty, omitted-variable bias.

1. Introduction

Chatfield (1995, p. 419) has broadly proclaimed that “model uncertainty is a fact of
life and likely to be more serious than other sources of uncertainty which have received
far more attention from statisticians.” More specifically, Hosman, Hansen, and Holland
(2010, p. 849) argue that “when regression results are questioned, it is often the noncon-
founding assumption that is the focus of doubt.” Despite these concerns, and even in the
presence of clear potential for omitted-variable bias, summaries of statistical analyses are
often presented as if models were certain. For examples of this practice see Jungert et al.
(2012), Nelson et al. (2013), Lignell et al. (2013) and Cervellati et al. (2012). The extent
to which the conclusions of such studies are reliable remains indeterminate. Here we
clarify the matter, slightly, through study of the confounding of a relationship between
two variables due to the presence of a third variable.
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Assume that n, 3-dimensional observations have been made resulting in three vectors
of data, x, y and w, which we assume to be centered. The observed correlation r(x,y)
provides a crude estimate for an association between X and Y , but it may be confounded
by the lurking variable W . Utilizing the information contained within w, multiple
regression and the principle of least squares leads to an adjusted estimate, β̂x|w, for the

unique effect of X on Y , while controlling for W . Both β̂x = r(x,y)sy/sx and β̂x|w
estimate the true, unique effect, βx. Note that the standard deviations sy and sx are
positive.

While r(x,y) is scale invariant, β̂x and β̂x|w are not. However, it is possible to concern

ourselves simply with the direction of the estimates: specifically sign(β̂x|w) and sign(β̂x)
(= sign(r(x,y))). For r(x,y) 6= 0 we assume without loss of generality that r(x,y) > 0,
and then ask for the probability of β̂x|w < 0. In other words, we ask this question: what
is the probability that controlling for a random confounding vector leads to an adjusted
estimate opposite the direction of the original estimate?

To answer the question we first consider the set of w that make β̂x|w = 0. We shall see
how this set is the boundary of an ellipsoidal cone of two nappes (Equation (A.4)). This
boundary region can be identified with the space of factor vectors that make reproduced
correlation between x and y equal to the original correlation between x and y. The
identification reveals a connection between least-squares estimates that adjust to zero
(Equation (A.2)) and vanishing residual correlations of factor analysis (Equation (2.28)
of Harman (1976)). Here w is not to be thought of as a factor vector but rather as a
generic vector associated with an unobserved variable that may or may not be relevant.

2. Results

Working with centered y 6= 0 and standardized x and w, meaning ȳ = x̄ = w̄ = 0 and
|x| = |w| =

√
n− 1, we fix y and x so that 〈y,x〉 > 0, and we consider a random w on

the sphere Sn−2√
n−1

, distributed uniformly. By this we mean that it is distributed according

to the unique, rotationally invariant, probability measure on that sphere. For a proof
of existence and uniqueness of such a measure see Khoshnevisan (2010, Theorem 7.23).
Note that such a measure would result from spherical projection of vectors, when each
vector has entries that are independent observations on a centered, normally distributed
W . Note also that the sphere’s dimension, n− 2, is appropriate, since centered vectors
lie orthogonal to a vector of ones and thus within an n − 1 dimensional space. This
is the space where Sn−2√

n−1
is situated. Mathematical details are found in the appendix.

The probability, P , of w being positioned so that β̂x|w < 0, given 0 < r(y,x) < 1, is a
function of the sample size n. With r = r(x,y) and n ≥ 4 the following theorem can be
stated.

Theorem 2.1.

(
1− r

2

)n−2

<
√
πP (n) <

(
1− r
1 + r

)(n−2)/2

.

The probability that a random vector causes an estimate to reverse its direction de-
creases to zero exponentially as the sample size increases. To suggest a rough comparison,
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suppose the model Y = β0 + βxX + ε is known with certainty to be true, with βx > 0.
If we assume that the errors are unbiased, uncorrelated, and have the same variance
σ2, then because we are working with standardized, explanatory vectors of data, the
least-squares estimate β̂x has variance σ2/(n − 1) (Seber and Lee, 2003, Section 3.2).
Assuming normality as well allows us to conclude that β̂x =d N(βx, σ

2/(n− 1)) (Seber
and Lee, 2003, Section 3.4). Since for x > 0 the Gaussian, complementary error function
satisfies

x

x2 + 1

1√
2π
e−x

2/2 <

∫ ∞
x

1√
2π
e−t

2/2dt <
1

x

1√
2π
e−x

2/2, (2.1)

(Gordan, 1941) we can conclude that P
(
β̂x < 0 | βx > 0

)
is decreasing exponentially in

the sample size as well.

The upper bound of (2.1) implies

P
(
β̂x < 0 | βx > 0

)
<

1

(βx
√
n− 1/σ)

1√
2π
e−(βx

√
n−1/σ)2/2,

while the lower bound from Theorem 2.1 ensures

1√
π

(
1− r(x,y)

2

)n−2

< P
(
β̂x|w < 0 | β̂x > 0

)
,

where we have written P
(
β̂x|w < 0 | β̂x > 0

)
in place of P (n). Thus, asymptotically,

P
(
β̂x < 0 | βx > 0

)
< P

(
β̂x|w < 0 | β̂x > 0

)
,

as long as e−β
2
x/(2σ

2) < (1− r(x,y))/2. This observation alludes to the dangers of over-
adjustment: adjustment for an independent, normally distributed random variable is
not necessarily a benign act; the probability that such adjustment changes the sign of
an estimate can be larger than the probability for the sign of the original estimate being
correct in the first place.

Conversely, suppose for example, as part of a model selection procedure, that inves-
tigators notice sign(β̂x|w) 6= sign(β̂x), in the presence of a modest r(x,y) value of say
1/3. According to the theorem, the probability for such a reversal must be less than
1/2(n−2)/2, where n is the sample size. For large n this probability may be small enough
to warrant a rejection of the assumption of a rotationally invariant distribution for w. If
w consists of independent observations on a normally distributed W , then we may reject
the assumption that W is independent of X and Y . In this way W can be identified as
a possibly confounding variable.

3. Simulations

We have seen, when W is independent of both X and Y , that as the sample size in-
creases then the probability of sign(β̂x|w) 6= sign(β̂x) decreases exponentially. We have
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also seen, when assuming Y = β0 + βxX + ε and common assumptions of regression,
that as the sample size increases then the probability of sign(β̂x) 6= sign(βx) decreases,
again, exponentially. Moreover, we have shown asymptotically that the probability
of sign(β̂x|w) 6= sign(β̂x) is greater than the probability of sign(β̂x) 6= sign(βx) when

e−β
2
x/(2σ

2) < (1− r(x,y))/2.

Here we summarize relevant information obtained from simulations. Table 3.1 gives
proportions of simulated trials that satisfy e−β

2
x/(2σ

2) < (1 − r(x,y))/2, when X is
uniformly distributed from zero to b, and βx/σ is set at specified values. For simplicity
we have fixed σ = 1 and written just βx in place of βx/σ. Our estimate for the proportion
is denoted with p̂, and the mean correlation across like trials is denoted with r̄. Table
3.2 shows when the implication of e−β

2
x/(2σ

2) < (1 − r(x,y))/2, namely P (sign(β̂x|w) 6=
sign(β̂x)) > P (sign(β̂x) 6= sign(βx)), becomes practically significant. The entries of Table
3.2 are simulated estimates for P (n).

In general, e−β
2
x/(2σ

2) < (1− r(x,y))/2 occurs when βx is relatively large compared to
σ. For fixed (βx, σ), larger b results in larger r̄ values and smaller p̂ values. Even with
b = 10 we see that large enough βx/σ leads to p̂ near 1, albeit in the presence of larger r
values, and we know via Table 3.2 that reversals are rare when r is large. Nonetheless,
large p̂ values reveal situations where inaccuracy due to spurious adjustment may be
more concerning than inaccuracy due to sampling. For example, with βx = 3, σ = 2,
b = 0.5, and n = 10, we have p̂ = 0.65 and r̄ = .20, and with r = .20 and n = 10 the
reversal probability is significant: P (n) > 0.05.

4. Application

At the end of Section 2 it has been described how the upper inequality from Theorem
2.1 can be used to identify W as a possible confounder. The reasoning described there
is applicable and readily demonstrated with an example here. Note that when r < 0 we
can apply the theorem with |r| in place of r.

Plant scientist Paul Frater has studied the roots of little bluestem (Schizachyrium
scoparium), a North American prairie grass.1 He has observed 197 plants throughout the
Central United States and taken measurements on variables such as plant root length
(root length), soil carbon-nitrogen ratio (C:N), and percentage of root colonized by
mycorrhizal fungi (colonization).

The bivariate correlation between C:N and root length is r = −.080. However, when
root length is linearly modeled as a function of C:N and colonization, then the least-
squares fitted coefficient for C:N is positive. The histogram for colonization is shown in
Figure 1, along with a Q–Q plot.

Suppose that the observations of colonization are independent and normally dis-
tributed. If colonization were independent of both C:N and root length then by ei-
ther Theorem 2.1 (or an extension of Table 3.2) the observed reversal would occur with
probability less than 10−7. This value is small enough to warrant a rejection of the

1Data available upon request
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Table 3.1: For each set of specified values for the parameters βx, n, and b, a fixed set of
100, 000 synthetic samples was obtained, so as to determine the proportion,
p̂, of synthetic samples that satisfy e−β

2
x/(2σ

2) < (1 − r(x,y))/2, and also to
compute the mean correlation, r̄.

βx

.1 .5 1 2 3 5 10

(n = 6, b = 1) p̂ 0 .021 .154 .717 .991 1 1

r̄ .025 .132 .260 .476 .630 .807 .940

(n = 30, b = 1) p̂ 0 0 .004 .975 1 1 1

r̄ .030 .141 .275 .505 .652 .821 .945

(n = 6, b = 10) p̂ 0 0 0 .001 .043 .999 1

r̄ .258 .807 .940 .984 .993 .997 .999

(n = 30, b = 10) p̂ 0 0 0 0 0 1 1

r̄ .274 .821 .945 .985 .994 .998 .999

Table 3.2: Given two, positively correlated, length-n vectors x and y, we produced
100, 000 synthetic, length-n, w vectors, each with entries consisting of in-
dependent observations from the standard, normal distribution, and for each
such w, we computed β̂x|w. Each table entry gives the proportion of the

100, 000 trials that satisfied β̂x|w < 0, and as such the table entries are simu-
lated estimates for P (n).

n r = .1 r = .25 r = .5 r = .9

6 .267 .132 .041 .001

10 .153 .038 .004 < .001

20 .044 .002 < .001 < .001

50 .002 < .001 < .001 < .001

100 .001 < .001 < .001 < .001
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Figure 1: The graphics do not indicate extreme departure from normality

independence assumption. This rejection combined with subject matter knowledge then
leads to consideration of colonization as a confounding variable for the effect of C:N on
root length.

5. Discussion

Subject matter knowledge is needed to definitively identify a covariate as a confounding
variable (Pearl, 2009a, p. 100). As just shown, Theorem 2.1 leads to a test for confound-
ing, and the approach is consistent with the practice of characterizing confounding vari-
ables as those variables that correlate with both treatment (or an explanatory variable
of interest) and outcome (Frank, 2000, p. 150). Pearl (2009b) gives a causal definition
for confounding in his book Causality. For further reading relating to confounding see
Greenland and Morganstern (2001), Rosenbaum and Rubin (1983), McNamee (2003),
and Howards et al. (2012).
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Figure 2: t ∝ cot θ, F ∝ cot2(θ), and sign(β̂x|w) 6= sign(β̂x) when w is positioned within
the red, elliptical cone.

Here we have taken advantage of symmetry about zero and focused on reversals of
directions of effects. There is some related literature on this topic within the field of
econometrics. Leamer (1975) has used t and F statistics to show how reversals can occur
during model contraction only if the set of variables to be dropped is more significant
than the variable of interest. There are similar results (McAleer, Pagan, and Visco,
1986; Oksanen, 1987; Visco, 1988) that are useful to the applied econometrician (Giles,
1989, p. 465). See also Knaeble (2014). All these results, including the results of this
paper (which are distinct in their emphasis on probabilities), can be used to improve
intuition for the applied practicioner of regression.

Testing for independence of W , as we have done here in Section 4, is not the same
as testing for significance of W , as done through a t test within multiple regression
analysis. The former test checks the degree to which centered w points along the sum
of standardized x and standardized y. The latter test, which in our case is equivalent
to an F test of significance for a model extension, checks the change in ŷ due to w.
See Figure 2 for an illustration. Note how the t or F statistics are determined by the
position of x and the position of the plane spanned by {x,w}, whereas β̂x|w depends on
the particular position of w itself.

Hoeffding (1948) has introduced a non-parametric test for the independence of two
continuous random variables. More recently, Szekély, Rizzo, and Bakirov (2007, Theorem
7) have introduced a test based on distance covariance. Distance covariance can be used
to test the independence of W from (X,Y ). Szekély, Rizzo, and Bakirov (2007) have run
simulations to compare the power of their test, to the power of the likelihood ratio test
that uses Wilks Lambda (Wilks, 1935), and to the power of the related Puri-Sen rank
or sign tests (Puri and Sen, 1971, Chapter 8). Margaritis and Thrun (2001) discretize
at multiple resolutions and take a Bayesian approach.

Reasoning based on knowledge of the magnitudes for the probabilities from Theorem
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2.1 may be used to support informal testing of independence during exploratory anal-
ysis, as shown in Section 4. It may be possible to sharpen this reasoning, with tighter
inequalities from improved geometric analysis, or through consideration of the exact val-
ues of β̂x|w and β̂x (not just their directions). Hosman, Hansen, and Holland (2010) and
Frank (2000) have formulas that could prove useful in this regard.
W has been assumed to be normally distributed during production of Table 3.2. The

variable colonization has been observed to be approximately normally distributed in
Section 4. Theorem 2.1 requires w to have a rotationally invariant distribution. Simula-
tions with binomial (p = .5), uniform, and exponential (λ = 1) distributions for W have
produced tables analogous and similar to Table 3.2. These modified tables generally
differ only in the thousandths digit. This fact is supportive of the claim that our results
are not sensitive to departures from normality. It remains to see precisely how sensitive
Theorem 2.1 is to departures from a perfectly rotationally-invariant distribution for w.

To conclude, here we summarize what has been done. Geometric analysis on vectors
of centered data has led to mathematical results that quantify the relationship between
error probabilities associated with statistical adjustment and probabilities associated
with sampling error. Simulations have shown that the error probabilities associated with
adjustment can be practically significant and greater than the probabilities associated
with sampling error. The analysis has shown, that as the sample size increases, both
types of probabilities decrease exponentially. The main analytic result can be used to
support an argument that a covariate is a confounding variable.

A. Appendix

A.1. Caps on a Sphere

For the purpose of proving Theorem 2.1 we can assume that all three vectors, y, x
and w, have each been geometrically standardized, meaning that they are centered and
positioned on a unit sphere.

Definition A.1. The (d− 1)-dimensional sphere of radius a is

Sd−1
a =

{
(u1, u2, ..., ud) ∈ Rd : u2

1 + u2
2 + ...+ u2

d = a2
}
.

Definition A.2. The d-dimensional ball of radius a is

Bd
a =

{
(u1, u2, ..., ud) ∈ Rd : u2

1 + u2
2 + ...+ u2

d < a2
}
.

Remark A.1. We use the same notation for embedded such objects.

Remark A.2. When a = 1 we drop the subscript.

Definition A.3. For nonzero vectors u1 and u2, define the angle between them, θ, to
be

θ(u1,u2) = cos−1

(
〈u1,u2〉
|u1||u2|

)
.
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Definition A.4. Given a point, p, on the sphere Sk−1, and an angle φ, where 0 < φ <
π/2, define the cap, C(p, φ), as

C(p, φ) =
{

s ∈ Sk−1 : θ(s,p) < φ
}
.

Definition A.5. Given a cap, C(p, φ), of the sphere Sk−1, define its negative, −C(p, φ),
as

−C(p, φ) =
{

s ∈ Sk−1 : θ(−s,p) < φ
}
.

Definition A.6. Given a cap, C(p, φ), of the sphere Sk−1, and also the cap’s negative,
−C(p, φ), define their union, K(p, φ), as

K(p, φ) = C(p, φ) ∪ −C(p, φ).

Definition A.7. With n denoting the sample size, set k = n − 1 and fix x,y ∈ Sk−1

so that 0 < r(x,y) < 1. Define the subset of centered, unit length, reversal-inducing
vectors as

R = {w ∈ Sk−1 : β̂x|w < 0}.

Proposition A.1. Within the context of Definition A.7,

K

(
x + y

|x + y|
,
θ(x,y)

2

)
⊂ R ⊂ K

(
x + y

|x + y|
, cos−1

(√
2r(x,y)

r(x,y) + 1

))
. (A.1)

Proof. A formula of Cohen et al. (2003, Equation (3.24)) gives

β̂x|w =
r(x,y)− r(x,w)r(w,y)

1− r(x,w)2
. (A.2)

Set r = r(x,y) and select k orthonormal basis vectors for the ambient space of Sk−1, so
that x and y can be expressed with new coordinates as

x =

(
−
√

1− r
2

,

√
1 + r

2
, 0, ..., 0

)
and y =

(√
1− r

2
,

√
1 + r

2
, 0, ..., 0

)
.

Temporarily let w = (w1, ..., wk) vary throughout this same ambient space. It is thus
a centered vector of arbitrary magnitude, while x and y are centered and unit length.
Because any correlation coefficient is an inner product of centered vectors divided by
their magnitudes, and since (1 − r(x,w)2) > 0, we have via (A.2) that β̂x|w = 0 if and
only if

2r = 2r(x,w)r(w,y)

2r = 2

(
−w1

√
1− r

2
+ w2

√
1 + r

2

)
1

|w|

(
w1

√
1− r

2
+ w2

√
1 + r

2

)
1

|w|
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2r = 2

(
w2

2

(1 + r)

2
− w2

1

(1− r)
2

)
1

|w|2

2r|w|2 =
(
w2

2(1 + r)− w2
1(1− r)

)
. (A.3)

With w2 = 1, line (A.3) can be rewritten as

2r(w2
1 + 1 + w2

3 + ...+ w2
k) = (1 + r) + (r − 1)w2

1

(r + 1)w2
1 + 2r(w2

3 + ...+ w2
k) = 1− r

1 + r

1− r
w2

1 +
2r

1− r
(w2

3 + ...+ w2
k) = 1. (A.4)

Since scaling of w does not affect β̂x|w, the zero set {w : β̂x|w = 0} is conical, of two

nappes, with ellipsoidal cross-sections. The reversal region R = {w ∈ Sk−1 : β̂x|w < 0}
is thus the intersection of the interior of this ellipsoidal cone with the standard sphere.
Elementary trigonometry ensures that the minimum opening angle for the cone is θ(x,y),
and half the maximum opening angle for the cone is cos−1

(
(2r(x,y)/(r(x,y) + 1))1/2

)
.

It remains only to observe that any spherical cap is defined with an angle φ that is half
the opening angle for an associated spherical cone.

A.2. Exponentially Decreasing Probabilities

In order to estimate the proportion of the sphere taken up by R, we seek first a lower
estimate for the volume of the smallest set in (A.1) and then an upper estimate for
the volume of the largest set in (A.1). We proceed using techniques known to convex
geometers (Ball, 1997). We let “∂” denote the boundary of a set, and we let µ denote the
Hausdorff measure of a set (where normalizing constants have been chosen for consistency
with Lebesgue measure). See Federer (1969) for measure theoretic details. Note that
∂Bd

a = Sd−1
a . We write Γ for the gamma function.

Lemma A.1. Let x,y ∈ Sk−1: 0 < r(x,y) < 1. For all k ≥ 3,

1√
π

(
(1− r(x,y))

2

)k−1

<
µ
(
K
(

x+y
|x+y| ,

θ(x,y)
2

))
µ(Sk−1)

. (A.5)

Proof. Without loss of generality assume that (x + y)/2 = (t, 0, 0, ..., 0) for some t > 0.

Elementary trigonometry ensures that t =
√

(r(x,y) + 1)/2 and |(x−y)/2| =
√

1−r(x,y)
2 .

Let s stand for

√
1−r(x,y)

2 .

Due to the curvature of Sk−1,

µ

(
K

(
x + y

|x + y|
,
θ(x,y)

2

))
> 2µ

(
Bk−1
s

)
.
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Also, µ(Bd) = πd/2

Γ(1+d/2) , µ(∂Bd) = dπd/2

Γ(1+d/2) , and µ(Bd
a) = ad πd/2

Γ(1+d/2) (Ball, 1997, Lec-

ture 1). Therefore,

µ
(
K
(

x+y
|x+y| ,

θ(x,y)
2

))
µ(Sk−1)

>
2µ
(
Bk−1
s

)
µ(∂Bk)

=

2sk−1π(k−1)/2

Γ(1/2+k/2)

kπk/2

Γ(1+k/2)

=
2sk−1

√
πk

Γ(1 + k/2)

Γ(1/2 + k/2)

>
2√
π

sk−1

k

3k − 5

2k − 2

=
1√
π

3k − 5

k(k − 1)

(
1− r(x,y)

2

)(k−1)/2

≥ 1√
π

(
1− r(x,y)

2

)(k−1)/2(1− r(x,y)

2

)(k−1)/2

=
1√
π

(
1− r(x,y)

2

)k−1

The third inequality is due to the hypothesis k ≥ 3. The middle inequality is due
to the following argument. In general, Γ(x) = (x − 1)Γ(x − 1), resulting in Γ(x) −
Γ(x − 1) = (x − 1)Γ(x − 1) − Γ(x − 1) = Γ(x − 1)((x − 1) − 1) = Γ(x − 1)(x − 2).
By convexity, Γ(x + 1/2) is thus greater than Γ(x) + Γ(x − 1)(x − 2)/2, and with the
substitution of Γ(x)/(x−1) for Γ(x−1) in the latter expression, the inequality simplifies
to Γ(x+ 1/2) > Γ(x) + Γ(x)(x− 2)/(2(x− 1)). Dividing by Γ(x) then results in Γ(x+
1/2)/Γ(x) > 1 + (x− 2)/(2(x− 1)) = (3x− 4)/(2x− 2). With x = 1/2 + k/2, the result
is Γ(k/2)/Γ((k − 1)/2) > (3k − 5)/(2k − 2).

Lemma A.2. Let x,y ∈ Sk−1. Let 0 < r(x,y) < 1. For all k ≥ 3,

µ
(
K
(

x+y
|x+y| , cos−1

(√
2r(x,y)
r(x,y)+1

)))
µ(Sk−1)

<
1√
π

(
1− r(x,y)

1 + r(x,y)

)(k−1)/2

. (A.6)

Proof. Without loss of generality assume that x+y
|x+y|

√
2r(x,y)
r(x,y)+1 = (t, 0, 0, ..., 0) where

t =
√

2r(x,y)
r(x,y)+1 . Set s =

√
1−r(x,y)
1+r(x,y) . Radial projection of C

(
x+y
|x+y| , cos−1

(√
2r(x,y)
r(x,y)+1

))
(from the origin) onto {(u1, u2, ..., uk) ∈ Rk : u1 = 1} ∼= Rk−1 results in the ball Bk−1

s .
Thus,

µ

(
K

(
x + y

|x + y|
, cos−1

(√
2r(x,y)

r(x,y) + 1

)))
< 2µ

(
Bk−1
s

)
.

Also, µ(Bd) = πd/2

Γ(1+d/2) , µ(∂Bd) = dπd/2

Γ(1+d/2) , and µ(Bd
a) = ad πd/2

Γ(1+d/2) (Ball, 1997,

Lecture 1). Therefore,

µ
(
K
(

x+y
|x+y| , cos−1

(√
2r(x,y)
r(x,y)+1

)))
µ(Sk−1)

<
2µ
(
Bk−1
s

)
µ(∂Bk)

=

2sk−1π(k−1)/2

Γ(1/2+k/2)

kπk/2

Γ(1+k/2)
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=
2sk−1

√
πk

Γ(1 + k/2)

Γ(1/2 + k/2)

<
2√
π

sk−1

k

k + 3

4

=
2√
π

sk−1

4

k + 3

k

≤ 2√
π

sk−1

4

2

1

=
sk−1

√
π
.

The third inequality is due to the hypothesis k ≥ 3. The middle inequality is due
to the following argument. In general, Γ(x + 1) = xΓ(x). By convexity, Γ(x + 1/2) <
(Γ(x) + Γ(x+ 1))/2. Thus, Γ(x+ 1/2) < (Γ(x) + xΓ(x))/2. Dividing by Γ(x) results in
Γ(x+ 1/2)/Γ(x) < (1 +x)/2. With x = 1/2 +k/2, Γ(k/2)/Γ((k−1)/2) < (k+ 3)/4.

To complete the proof of Theorem 2.1, divide (A.1) by µ(Sk−1), appeal to the in-
equalities in (A.5) and (A.6), and write the result in terms of n, before multiplying by√
π.
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