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Nonlinear CUB models have been recently introduced in the literature to
model rating or ordinal data. They extend the standard CUB (Combination
of Uniform and Binomial), which is a mixture model combining a discrete
Uniform and a Shifted Binomial random variables. Unlike CUB, Nonlinear
CUB models account for the unequal spacing among response categories.
Nonlinear CUB can be effectively used in a variety of fields, for example
whenever questionnaires with questions having ordered response categories
are used to measure human perceptions and attitudes. This paper proposes
a new graphical representation, which works with R grid Viewports in order
to summarize multiple results from Nonlinear CUB models in a unique plot.
A case study on the perceived risk in fraud management is presented.

keywords: rating data, ordinal, feeling, uncertainty, transition probabili-
ties, perceived risk.

1 Introduction

In recent years there has been a growing interest in the statistical models and techniques
specifically intended for ordered categorical variables, which typically derive from ques-
tions with ordered response categories. For example, to measure customer satisfaction,
it is common to ask customers to rate their satisfaction on a given response scale with
ordered levels. Such kind of questionnaires are very often used in several fields, not only
marketing, to investigate individuals’ perceptions, attitudes, behaviors, cognitions and
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c©Università del Salento
ISSN: 2070-5948
http://siba-ese.unisalento.it/index.php/ejasa/index



Electronic Journal of Applied Statistical Analysis 361

the resulting data, often referred as to rating data, are to be analyzed with appropriate
tools.

Among the existing methods addressed to model rating data (for example, Agresti,
2013; Tutz, 2012), an original class of models, called CUB, has been proposed by Piccolo
(2003) and D’Elia and Piccolo (2005). In the framework of CUB models, the individuals’
decision process is interpreted as the combination of two latent components, called feeling
and uncertainty, related to the model parameters. The feeling component measures
the level of agreement with the item being evaluated while the uncertainty component
expresses the human indecision that is present in any discrete choice. CUB models
can be applied to rating data in any context: the applied statistical papers focus on
a wide range of fields, from labour economics (Gambacorta and Iannario, 2013), to
happiness economics (Capecchi and Piccolo, 2014), marketing (Iannario et al., 2012),
medicine (D’Elia, 2008), sensometrics (Piccolo and D’Elia, 2008) and many others (see
the references in Iannario and Piccolo, 2014).

Besides the huge amount of possible applications, several papers developed and ex-
tended the methodological aspects of the CUB models (Corduas et al., 2009; Gamba-
corta et al., 2014; Grilli et al., 2013; Iannario, 2012c,a,b, 2014; Iannario and Piccolo,
2010, 2012; Manisera and Zuccolotto, 2014a,b; Piccolo, 2006, 2014). Among these new
developments, in this paper we focus on the Nonlinear CUB model (NLCUB; Manisera
and Zuccolotto, 2014b) that has been proposed as a generalization of the standard CUB
in order to model the possible “unequal spacing” among the response categories in the
respondents’ perception. Even when the possible m response categories in a rating scale
are coded with m consecutive integers, it is not possible to ensure that the perceived
distance between categories, say, 1 and 2 is the same as between 2 and 3: in the Non-
linear CUB philosophy, the respondents can find it more difficult moving from rating
1 to 2 than from rating 2 to 3. This unequal spacing has been formalized by means
of the definition of transition probabilities, i.e. the probabilities of moving from one
rating to the next one during the decision process. When transition probabilities are
non-constant, the response categories are unequally spaced in the respondents’ mind and
the decision process is said to be nonlinear (Manisera and Zuccolotto, 2014b). Unlike
standard CUB, NLCUB can be used to model rating data with non-constant transition
probabilities.

Further research on NLCUB as well as real data analyses can be found in Manisera
and Zuccolotto (2013, 2014b, 2015b,a,c) and the references therein. In addition, a free
program has been developed in the software environment R for NLCUB estimation,
graphical representation of a variety of outputs, fit evaluation, along with data simulation
according to the NLCUB data generating process (Manisera and Zuccolotto, 2014c).

The aim of this paper is to propose a new graphical representation, which works with
R grid Viewports (Murrell, 1999), able to summarize multiple results from NLCUB
models in a unique plot. This kind of representation makes it easier to interpret the
results from a NLCUB model and compare feeling and uncertainty over several items,
or groups of people expressing evaluations on a single item of interest. The paper is
organized as follows: Section 2 briefly recalls the main features of CUB and NLCUB
models; Section 3 focuses on the NLCUB transition probabilities and their graphical
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representation, called transition plot (Subsection 3.1), which is one of the ingredients of
the new graphical representation proposed in Section 4. Section 5 shows a case study
on real data concerned with the fraud risk perceived by the management of a sample of
Italian companies. Section 6 concludes the paper.

2 CUB and Nonlinear CUB models

The class of CUB models is built on the basic assumption that, when a subject is asked
to express a rating about a given issue on an ordered response scale with m categories,
his/her response derives from the combination of a feeling attitude towards the evaluated
issue and an intrinsic uncertainty component surrounding the discrete choice. According
to this logic, CUB models fit rating data by means of a mixture of two random variables,
namely a Shifted Binomial V (m, ξ) with trial parameter m and success probability 1−ξ -
modelling the feeling component - and a discrete Uniform U(m) defined over the support
{1, . . . ,m} - aimed to model the uncertainty component. The resulting random variable
R generating the observed ratings r (r = 1, . . . ,m) has distribution probability given by

pr(θ) = πPr(V (m, ξ) = r) + (1− π)Pr(U(m) = r) (1)

where pr(θ) = Pr(R = r|θ), r = 1, . . . ,m, θ = (π, ξ)′, π ∈ (0, 1], ξ ∈ [0, 1]. The
parameters 1 − ξ and 1 − π are called feeling parameter and uncertainty parameter,
respectively.

The NLCUB (Manisera and Zuccolotto, 2014a) is a new model in the CUB class,
deriving from the attempt to take into account a possible unequal spacing of the rating
categories in the respondents’ mind. The discrete random variable R is assumed to
depend on a new parameter T (T ≥ m−1) and has the following probability distribution

pr(θ) = π
∑

y∈l−1(r)

Pr(V (T + 1, ξ) = y) + (1− π)Pr(U(m) = r), (2)

whose specific expression is determined by l, a function mapping from {1, . . . , T + 1}
into {1, . . . ,m}. The function l(·) is defined as

l(y) =


1 if y ∈ {y11, . . . , yg11}
2 if y ∈ {y12, . . . , yg22}
...

...
...

m if y ∈ {y1m, . . . , ygmm}

. (3)

In expression (3), yhs is the h-th element of l−1(s), and

(y11, . . . , yg11, y12, . . . , yg22, . . . , y1m, . . . , ygmm) = (1, . . . , T + 1).

Let gs = |l−1(s)|, where | · | denotes the cardinality of a set, the function l is univo-
cally determined by the values g = (g1, . . . , gm)′. In the end, for a given value g, the
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probability distribution of R can be written as

pr(θ|g) = π

g0+···+gr−1∑
i=g0+···+gr−1

(
T

i

)
(1− ξ)iξT−i +

1− π
m

(4)

where g0 := 0 and T = g1 + . . .+ gm − 1.

The NLCUB model includes the standard CUB as a special case, originating with
T = m − 1 and gs = 1 for all s = 1, . . . ,m. Simulation studies and real data analyses
with NLCUB can be found in Manisera and Zuccolotto (2013, 2014b), while some deeper
theoretical investigations about the identifiability conditions and the use of the EM
algorithm for parameter estimation are in Manisera and Zuccolotto (2015b,a).

3 The NLCUB transition probabilities

In Manisera and Zuccolotto (2014b) the idea supporting the definition of the NLCUB
model derives from a specific assumption about the psychological mechanism generating
the rating expressed by the respondent. Two different approaches, called feeling and un-
certainty approach, coexist in the respondents’ decision process and the final rating can
derive from the feeling or the uncertainty approach with given probabilities. While the
uncertainty approach consists of a random judgment, according to the feeling approach
the search for the answer is ideally assumed to proceed trough T unconscious consecu-
tive steps. During these steps the respondent makes a screening of all the positive and
negative sensations (basic judgments) randomly coming to his/her mind. At each step
he/she summarizes the current and the previous basic judgments and transforms them
into a rating in the required scale (provisional ratings). The process goes on until all
the emotions and the experiences surrounding the issue being evaluated are taken into
account.

Thanks to this step-by-step formulation, denoted with Rt the random variable gener-
ating the provisional rating at step t, we can define the so-called transition probabilities
φt(s) = Pr(Rt+1 = s + 1|Rt = s), i.e. the probability of moving to provisional rating
s + 1 at step t + 1, given that the provisional rating at step t is s, s = 1, . . . ,m − 1.
Transition probabilities depend on the parameter ξ and the function l, and describe the
respondents’ state of mind about the response scale used to express judgments.

Manisera and Zuccolotto (2014b) have derived φt(s) for CUB and NLCUB models. In
the CUB models, the transition probabilities are constant over t, s:

φt(s) = 1− ξ ∀t, s (5)

with s = 1, . . . ,m− 1, t = 1, . . . ,m− 1.

In the NLCUB models, the transition probabilities are given by



364 Manisera, Zuccolotto

φt(s) = (1− ξ)

(
t

wgss

)
(1− ξ)wgssξt−wgss

gs∑
h=1

(
t

whs

)
(1− ξ)whsξt−whs

(6)

where whs = yhs − 1 and s = 1, . . . ,m − 1, w1s ≤ t < T , and are non-constant over t
and s, thus allowing to model psychological mechanisms where moving from rating s1
to s1 + 1 may be easier or harder than moving from s2 to s2 + 1.

Another parameter of interest is µ, the expected number of one-rating-point incre-
ments during the step-by-step reasoning, given by

µ = φ0 + (1− ξ)
T−1∑
t=1

m−1∑
s=1

(
t

wgss

)
(1− ξ)wgssξt−wgss (7)

with µ ∈ [0, (m− 1)]. With CUB model expression (7) collapses to µ = (m− 1)(1− ξ).
With NLCUB models, µ is used as feeling parameter in place of 1− ξ, because it allows
the comparison among NLCUB models with different values g (Manisera and Zuccolotto,
2014b).

3.1 The transition plot: a graphical tool to show the perceived
distance between consecutive rating categories

Starting from the transition probabilities (6), we can define a very insightful graphical
representation, called transition plot, able to show the perceived distance of the rating
categories in the respondents’ mind.

Let φ(s) = avt(φt(s)), where avt(·) denotes averaging over t, be the average transition
probability. It can be considered as a measure of the “perceived closeness” between
ratings s and s+ 1 and can be transformed into a “perceived distance” δs = h(φ(s)) by
means of a proper monotonically decreasing function h (usually δs = − log(φ(s))).

The perceived distances are the basis for constructing the transition plot, where a
broken line joins the points (s, φ̃(s − 1)), s = 1, . . . ,m, φ̃(0) = 0, and φ̃(s − 1) =
(δ1 + · · · + δs−1)/(δ1 + · · · + δm−1) for s = 2, . . . ,m. In a transition plot the response
scale is represented in the x-axis, while the corresponding perceived ratings are displayed
in the y-axis. Figure 1 represents two examples of transition plot. The one on the left
shows a case of response categories perceived as equally spaced, while the one on the
right is an example of unequal spacing, where the ratings 1, 2 and 3 are relatively close
each other, differently from ratings 4 and 5. This means that respondents, in their
reasoning, find it more difficult moving, say, from rating 3 to 4 than from rating 2 to 3.

The traditional CUB model is characterized by “linear” transition plots, as in the left
part of Figure 1, while “nonlinear” transition plots like that displayed in the right part
of Figure 1 derive from a NLCUB model.
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Figure 1: Examples of linear (left) and nonlinear (right) transition plot (m = 5)

4 A new graphical representation using the R grid
Viewports

When a NLCUB is fitted to rating data, multiple results can be obtained and inter-
preted to gain insights into the topic under investigation. As detailed in Manisera and
Zuccolotto (2014c), the R program NLCUB (freely available upon request to the Authors)
provides several numerical outputs: estimates for feeling and uncertainty parameters and
the g vector; the fitted frequencies; a goodness-of-fit index; the full transition probability
matrix, containing the estimated φt(s) for all s, t; the estimated transition probabilities
φ(s), computed averaging over t the probabilities in the transition probability matrix;
the unconditioned transition probability, that is the estimate of the probability of in-
creasing one rating point in one step of the decision process, independently both on the
step and on the rating reached at the previous step; a measure of the nonlinearity of the
decision process; the estimate of the uncertainty parameter adjusted for the presence of
“don’t know” responses, if any (Manisera and Zuccolotto, 2014a, 2015c). A list of several
other results are supplied when the chosen estimation procedure is the EM algorithm
instead of the Nelder-Mead numerical optimization procedure. Besides those numerical
outputs, two plots are automatically provided: the observed vs. fitted frequencies and
the transition plot (Subsection 3.1).

In this rich list of outputs, the measures of feeling and uncertainty and the transition
probabilities are very important to interpret the phenomenon under study. The main
purpose of this paper is to combine such information into a unique graphical represen-
tation, in order to obtain an immediate visualization of the results. In detail, two plots
are combined:

• first, the plot representing the measures of feeling (µ) and uncertainty (1 − π) in
the parameter square [0, 1) × [0,m − 1], with uncertainty on x-axis and feeling
on y-axis. In this plot, the location of the point representing the NLCUB model
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has an immediate meaning in terms of feeling and uncertainty of the item being
analyzed;

• secondly, the transition plot (Subsection 3.1), allowing a quick interpretation on
how respondents perceive the response scale and, in particular, the spacing among
the response categories.

The idea is to represent, for each item under study, the corresponding NLCUB in
the parameter square not by a point, but by a a very small and stylized transition
plot. The location of such stylized transition plots gives information about feeling and
uncertainty, while the transition plot itself gives information about the nonconstantness
of the transition probabilities and finally about the nonlinearity of the item.

As mentioned in Section 3, the transition probabilities result from the step-by-step
reasoning and, therefore, are only related to the feeling part of the NLCUB model,
while are not connected with the uncertainty latent component. When two items are
closely located in the parameter square, it is interesting to see if their transition plots are
similar or not: the same expected number µ of one-rating-point increments during the
step-by-step reasoning can be associated with different perceptions of the response scale.
On the contrary, similar shapes of the transition plot can be observed for two items
differently positioned in the parameter square: this means that the spacing between
response categories is perceived in the same way in the two items, but the final result
in terms of feeling µ is different. For example, consider the case of two items both
with linear transition plot but with a very different feeling µ: consecutive ratings are
considered as equally spaced in both items, but to reach high ratings has to be interpreted
as equally easy when the feeling is high or equally difficult when the feeling is low. This
kind of interpretation can be directly obtained by the proposed graphical representation
and makes comparisons among different items very easy and immediate.

From a computing point of view, in order to represent a small stylized transition plot
in the square representing the parameter space, we use the grid Viewports developed
in the R environment (Murrell, 1999). Viewports are very flexible tools that describe
rectangular regions on a graphics device (in our case, the parameter square) and define
a number of coordinate systems within those regions, where the stylized transition plots
are located.

In the following, we provide an example code that users can employ to obtain the
proposed graphical representation. Preliminarily, the data set must be read. It must
be stored in a data frame, called data, like in the example, with n rows and p columns
containing the ratings expressed by n subjects to p items of interest; in order to enhance
the plot, we recommend assigning the items’ names to the columns and create the
object labels (labels <- names(data)). Also, the number of ordinal categories of the
response scale must be stored in cats and the p-dimensional arrays Mu and Pai should
be initialized; they will be filled up with the p estimates of µ and π, respectively.

The focus in the following example code is on the proposed diagram; it is worth noting
that the part concerning the NLCUB estimation can be customized: the user can, for
example, choose between two different optimization algorithms (Nelder-Mead optimiza-
tion or the EM algorithm) or decide to give the frequency table instead of the vector of
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n ratings as input in the NLCUB function (in this case, freq.table must be set to TRUE,
which is the default option). All the details about the R program NLCUB, which is freely
available, are in Manisera and Zuccolotto (2014c). For details on the usage of the R grid
Viewport see Murrell (1999).

Example code

plot.new()

vp <- viewport(x=x1,y=y1,width=w1, height=h1,

just =c("left","bottom"))

pushViewport(vp)

grid.rect(gp=gpar(col=gray(0.6)))

vp <- viewport(x=x2,y=y2,width=w2, height=h2,

just = c("left","bottom"))

pushViewport(vp)

for (col in 1:ncol(data)){
source(NLCUB.R)

NLCUB(r=data[,col],m=cats,freq.table=FALSE)

Pai[col] <- pai

Mu[col] <- mu

vp <- viewport(x=(1-pai),y=mu/(cats-1),width=w3 height=h3,

just = c("centre","centre"))

pushViewport(vp)

stytrplot(tp=transprob,lab=labels,log.scale=TRUE)

upViewport()

}
par(new=TRUE, fig=gridFIG())

par(mar=c(0,0,0,0))

plot(1-Pai, Mu, xlim=c(0,1), ylim=c(0,(cats-1)),

type="n",xaxt="n",yaxt="n", bty="n")

axis(1,line=lin1)

axis(2,line=lin2)

upViewport()

upViewport()

par(new=TRUE, fig=gridFIG())

par(mar=c(0,0,0,0))

plot(1-Pai, Mu, xlim=c(0,1), ylim=c(0,(cats-1)),

type="n",xaxt="n",yaxt="n")

text(0.5,0,"Uncertainty",cex=1.4)

text(0,(cats-1)/2,"Feeling",srt=90,cex=c1)

text(0.5,(cats-1)-0.1,"Main title",cex=c2)

dev.off()
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Several arguments can be set as needed. To obtain the diagrams in Figures 2 and 3 we set
x1=y1=0.12, w1=h1=0.76, x2=y2=0.08, w2=h2=0.84, w3=h3=0.20, lin1=lin2=2.5,
c1=1.4, c2=1.8 and changed the "Main title" appropriately.

The function stytrplot in the example code is aimed at representing the transition
plot in its stylized form and has inputs given by the transition probabilities (tp), the
items’ labels (lab) and the log.scale logical flag, referring to the scale used to trans-
form the transition probabilities into perceived distances to be plotted. In detail, the
function stytrplot is defined as follows (the graphical parameters are set to the values
used in the following Figures 2-3 and can be modified):

stytrplot <- function{tp,lab,log.scale=TRUE}{
m <- length(tp)+1

if (log.scale==TRUE){tp <- -log(tp)}
trp <- cumsum(rbind(0,as.matrix(tp)))/max(cumsum(rbind(0,as.matrix(tp))))

par(mar=c(0.9,0.9,0.9,0.9))

par(new=TRUE, fig=gridFIG())

plot(trp,type="o", cex=0.5,ylim=c(-0.1,max(trp)+0.1),lty=1,lwd=1.7,

xlim=c(0.7,m+0.2),xlab="",ylab="", main=labels[col],

xaxt="n",yaxt="n", cex.lab=0.8,bty="n",cex.main=1)

}

In both the example code and the stytrplot function, a number of graphical parame-
ters can be customized, for example the size for text and symbols, by resorting to the
usual graphical commands in R (for example, see the par() function or some well-known
high-level plot functions, like axis, title, etc.).

5 Case study

In this section, we show how the new graphical representation proposed in Section 4 can
be effectively used to interpret the results from a survey investigating the management’s
perceveid risk of being victim of frauds.

All around the world, companies are increasingly under attack from cyber-criminals,
hacktivists and spies with the final aim to defraud companies. Nowadays, a huge number
of computers, networks, wireless links, smartphones, and other devices connect billions
of people to the Internet. Moreover, in troubled economic times, the risk of fraud
increases making traditional protections not appropriate for meeting security needs.
Fraud management aims at detecting and preventing fraudulent activity and applies
measures to ensure security of data. These measures include, among many others, risk
assessment. When making risk assessment, besides the objective risk level, it is also
important to assess the management’s attitude towards fraud, that is their perceived
risk.
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In this scenario, with the aim to assess the management’s perceived risk, NetCon-
sulting (Milano, Italy) carried out a survey in 2013 in Italy. The collected data involve
n = 116 managers of small (24%), mid-sized (31%) and large (45%) companies.

We performed two separate analyses. In the first, we considered data about a general
perception of fraud risk: the 116 managers were asked to express a judgment about (i)
their personal degree of perceived fraud risk (Individual Perceived Risk, IPR) and (ii) the
company’s degree of perceived fraud risk (Business Perceived Risk, BPR), both measured
on a 5-point Likert scale (from 1=very low to 5=very high). We fitted a NLCUB model
to the resulting data and, using the code described in Section 4, we obtained Figure 2. It
clearly shows that managers perceive a medium-high level of risk (µ equals 2.23 and 2.63
for IPR and BPR, respectively), with a slightly higher uncertainty when the Business
risk is considered (1 − π = 0.17 for BPR vs. 0.02 for IPR). The stylized transition
plot is linear for IPR (meaning that respondents considered the 5 response ratings as
equally spaced and the NLCUB reduces to a standard CUB model) while is nonlinear
s-shaped for BPR: respondents consider that moving from rating 2 to 3 is the most
difficult transition in the response scale.

Figure 2: Individual Perceived Risk (IPR) and Business Perceived Risk (BPR): measures
of uncertainty (x -axis) and feeling (y-axis), together with stylized transition
plots.

To perform the second analysis, we used the data from a set of questions asking the 116
managers to rate, on a 4-point Likert scale, their perceived fraud risk when using some
different Information and Communication Technologies: Web 2.0 and Social Networks,
cloud storage and computing, Bring Your Own Device and Legacy technologies. Figure
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3 shows that the perceived risk is higher when using Web 2.0 and Social Networks
(SOCNET, µ = 2.20) and Bring Your Own Device (BYOD, µ = 2.14) technologies,
intermediate when using cloud storage and computing (CLOUD, µ = 1.72), while the
lowest perceived risk refers to the use of the traditional legacy technologies (LEG, µ =
1.03). All the perceptions are expressed with a low level of uncertainty: 1−π ranges from
0.01 (BYOD) to 0.19 (SOCNET). It seems that there is a direct relationship between the
degree of perceived risk, on one hand, and the number of possible connections involved
in the use of each ICT, on the other hand. At the same time, we are able to analyze
in Figure 3 the four transition plots. All of them are nonlinear, with different shapes:
s-shaped for CLOUD (the most difficult transition in the respondents’ perceptions is
between ratings 2 and 3), convex for SOCNET and LEG (proceeding from one rating to
the next one is more and more difficult) and concave for BYOD (proceeding from one
rating to the next one is easier and easier).

Figure 3: Perceived fraud risk when using Web 2.0 and Social Networks (SOCNET),
cloud storage and computing (CLOUD), Bring Your Own Device (BYOD)
and Legacy technologies (LEG): measures of uncertainty (x -axis) and feeling
(y-axis), together with stylized transition plots.

Thanks to the proposed graphical representation, comparisons among items become
more effective respect to the possible interpretation made relying only on parameter
space and transition plots separately considered. Here, for example, we immediately see
that respondents perceive the response scale of SOCNET and LEG in the same way;
however, the difference in the feeling measure makes it possible to say that proceeding
from rating 3 to rating 4 is the most difficult transition for both items, but it is more
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difficult to reach high ratings for LEG than SOCNET, because of the difference in the
feeling of the two items. In addition, BYOD and SOCNET have comparable measures
of feeling (with higher uncertainty for SOCNET) but different spacing of the response
categories in the respondents’ mind.

6 Conclusions

Nonlinear CUB models, recently introduced in the literature to model rating or ordinal
data, extend the standard CUB because is able to account for the unequal spacing
among response categories perceived by respondents. Among the various outputs from
a NLCUB, we focus on two graphical representations: (i) the plot, in the parameter
space, of the measures of feeling (agreement with the item) and uncertainty (indecision
surrounding the discrete choice) and (ii) the transition plot, representing the perceived
spacing of the rating categories in the respondents’ mind.

Combining these two plots, we proposed an insightful graphical representation, which
works with R grid Viewports, able to summarize multiple results from Nonlinear CUB
models in a unique plot. The R code is given in detail, so that users can take advantage
of this paper as a guide to effectively make this plot when applying NLCUB models.

Results from a survey investigating the management’s perceived fraud risk show that
the proposed plot is easy to make and interpret and gives interesting insights in the
understanding the phenomenon under study.
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