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This study aims to compare the different between two data sets that hav-
ing the relationship between the dependent and independent variables at
each quantile using testing the equality of two parametric quantile regression
(QR), the conditional quantile regression and the conditional mean regres-
sion function are considered. The influence of the distribution of errors that
heavy tailed is also examined through a test statistic that is in the form of
the empirical distribution function (EDF), applying the bootstrapping prin-
ciple in the estimation of the critical value of the test statistic. In addition,
comparing the equality of two quantile regression functions at the extream
quantile are appied with the actual data. The results show that the type
I error and power of the test properties becomes better as the sample size
increases. However, with variables that heavy-tailed distribution of errors,
the conditional median regression function is more robust. An analysis of
the actual data indicates consistent findings.
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1 Introduction

Regression analysis is a statistical tool commonly used to explain the relationship be-
tween a dependent or explained variable Y and an independent or explanatory variable
X using the mathematical function Y = f(x), where Y represents a conditional expected
value, and the mean of Y-values is represented by E(Y |X). The function can be em-
ployed in comparing the conditional means of two independent sets of data. However,
this approach provides only information on the conditional mean but not other types
of important information such as the distribution of data. Another problem with the
conditional mean regression function is that the distribution of a dependent variable Y
may be heavy-tailed, the distribution of errors may be heavy-tailed, asymmetric, or not
unimodel, outlier etc. To solve such problems, the conditional mean regression analysis is
extended to the conditional quantile of the response variable (Koenker and Bassett, 1978)
and (Koenker and Hallock, 2001). There are several other approaches to comparing re-
gression functions, including testing the equality of conditional means based on the para-
metric and the nonparametric regression models as well as testing the equality of condi-
tional quantile regression functions. In this research we focus on comparing the quantile
regression function when the distribution of errors are heavy tailed. The idea about test-
ing the equality of regression curve such as: Kutner et al. (2005) tested the equality of
two linear regression models using the equation Yi = β0 +β1Xi1 +β2Xi2 +β3Xi1Xi2 +εi,
i=1,...,n: n = n1 + n2; n1, n2=the number of data in the first and the second sets, re-
spectively; Yi=dependent variable; Xi1= independent variable; Yi and Xi1=quantitative
data; Xi2=dummy variable,the value of which equals to 0 for the first set of data and 1
for the second set of data. They also specified three conditions for their model. First,
the relationships between two sets of data have to be linear. Second, the errors variance
of the two sets of data must not differ. Third, F-test is used to determine the equal-
ity of the regression curves corresponding to the two sets of data. King et al. (1991)
used a kernel smoother and fixed points with equal intervals in their analysis of a test
statistic involving two nonparametric regression curves. Kulasekera (1995) examined a
test statistic based on the Quasi-residuals technique and the estimators of variance of
the errors distribution. Pardo et al. (2007) evaluated a test statistic by comparing the
difference between two empirical distribution functions of errors, estimating the errors

of each regression function with the equation ε̂ij =
Yij−m̂j(Xij)

σ̂jXij
, and estimating the

regression curves with the Nadaraya-Watson estimator. Sun (2006) studied the applica-
tion of consistent nonparametric tests for analyzing the equality of unknown conditional
quantile curves and employed the wild bootstrap in estimating the critical value of the
test statistic. Kuruwita et al. (2014) examined the equality of nonparametric quantile
regression functions based on the marked empirical process. Bera et al. (2014) tested
the equality of regression functions by comparing the mean regression and the quantile
regression coefficient, applying the asymptotic joint distribution in formulating the test
statistic. Tonggumnead and Seangngam (2015) compared slops testing in simple linear
regression between using F testing and ZKS test derived from the empirical distribution
function (EDF) of errors.This study considered where Y represents a conditional ex-
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pected value, and the mean of Y is represented by E(Y |X). Despite their efforts to deal
with the problems inherent in the conditional regression function, researchers have not
arrived at an effective solution. The present study is aimed to comparing two data sets in
each quantile through testing the equality of two quantile regression functions. Because,
sometime we would like to compare two data sets that having the relationship between
dependent variable and independent variables only the hight values or only low values,
the problem about the distribution of errors and the distribution of dependent variable
Y etc. So, the regression function at each quantile is important. In this research, the
test statistic based on empirical distribution of errors are considered. The estimator of
the errors in each quantile regression is: εijτ = (Yij−fj(Xij , ˆβ(τ)). The empirical distri-
bution of errors of each regression function is determined using the equation F̂εjτ (y) =
1
nj

∑nj

i=1 I(Yij − fj(Xij , ˆβ(τ)) ≤ y), j = 1, 2, i = 1, ..., nj ,−∞ < y < ∞, τε(0, 1), where

fj(Xij , β̂(τ)) represents the conditional quantile regression function of Y given X for the
set of data j, with the quantile regression function being estimated using a paramet-
ric quantile regression function. The idea of the test statistic is that: If the empirical
distribution of errors in each quantile regression function between two sets of data is
similar, the quantile regression function in each group will be equal, then two data sets
have similar relationship between dependent and independent variables. On the other
hand, if the empirical distribution of errors in each quantile regression function between
two sets of data be different, the quantile regression function in each group will not be
equal, then two data sets be different relationship between dependent and independent
variables. In addition, the impact of distribution of errors that heavy tailed is analyzed,
and the application of the data are also included in the next section.

2 Materials and Method

Quantile regression is a type of regression analysis that is very useful when the rate
of change in the conditional quantile can be explained using the regression coefficient
depend on the quantile. For a random variable Y with the probability distribution
function F (y) = P (Y ≤ y), the τ th quantile of Y can be determined using the inverse
function Q(τ) = inf [y : F (y)≥τ ]. Let the observations for two independent sets of
data be in the form of (Xij , Yij), i = 1, ..., njj = 1, 2, For τε(0, 1), the conditional

quantile function Q(τ |X = x) = f(X,β(τ)) can be estimated using the equation β̂(τ) =
argminβεR

∑n
i=1 ρτ (Yij − fj(Xij , β(τ))) (Chen, 2005). In this research, the quantile

regression function model is represented by:

ˆβ(τ) = argminβεR

n∑
i=1

ρτ (Yij − fj(Xij , β(τ))), i = 1, ..., nj , j = 1, 2. (1)

Where fj(Xij , β(τ)) represents the τ th conditional quantile function of Y given X for
the jth population. For the present study, the comparison of the difference between
two independent sets of data is conducted by testing the equality of two quantile re-
gression functions, applying the following hypothesis H0 : f1(Xij , β(τ)) = f2(Xij , β(τ))
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versus H1 : f1(Xij , β(τ)) 6= f2(Xij , β(τ)). If the empirical distribution of errors in each
quantile regression function between two sets of data is similar, the quantile regression
function in each group will be equal (accept H0). Namely, two data sets have simi-
lar relationship between dependent and independent variables. On the other hand, if
the empirical distribution of errors in each quantile regression function between two
sets of data be different, the quantile regression function in each group will not be
equal (accept H1). Namely, two data sets be different relationship between depen-
dent and independent variables. The idea of the test statistic we apply follow Tong-
gumnead and Seangngam (2015). The principles for testing the hypothesis are that
f1(Xij , β(τ)),f2(Xij , β(τ)), j = 1, 2; i = 1, ..., nj , represents the quantile regression func-
tion for the first and the second sets of data, and f(Xij , β(τ)) represents the common
quantile regression function under the null hypothesis, and estimated from the two sets
of data combined. When the different between the empirical distribution function of er-
rors of the common quantile regression (F̂ 0

ετ (y)) and the empirical distribution function
of errors in each quantile regression (F̂εjτ (y)), j = 1, 2) not different, the null hypothesis
is confirmed. Namely, f1(Xij , β(τ)) = f2(Xij , β(τ) = f(Xij , β(τ)). A comparison of

the errors of each population is performed using the two-dimensional process ˆG(y) =

(Ĝ1τ (y), Ĝ2τ (y)): where Ĝjτ (y) = n
1/2
j (F̂ετ

0
(y) − ˆFεjτ (y)), j = 1, 2; i = 1, ..., nj ,and

the estimation of empirical distribution function of errors in each quantile regression is:
ˆFεjτ (y) = 1

nj

∑nj

i=1 I(Yij−fj(Xij , β̂(τ)) ≤ y),j = 1, 2; i = 1, ..., nj , −∞ < y <∞. The es-

timation of empirical distribution function of errors when the null hypothesis is confirmed

is: F̂ετ
0
(y) = 1

nj

∑nj

i=1 I(Yij − f(Xij , β̂(τ)) ≤ y),j = 1, 2; i = 1, ..., nj , −∞ < y <∞.The

Kolmogorov-Smirnov type statistic Aksτ =
∑2

j=1 supy|Ĝjτ |(y) is applied in testing the
equality of the two quantile regression functions, following Pardo et al. (2007), if the em-
pirical distributiom functions (EDF) of the errors of the two quantile regression functions
do not differ, the null hypothesis is confirmed. On the other hand, if the EDF different,
the alternative hypothesis is confirmed. In this study, assume the estimator of the error
in each quantile regression function: ˆεijτ = Yij − fj(Xij , β̂(τ)), j = 1, 2; i = 1, ..., nj ;

the estimator of the errors under the null hypothesis ˆε0ijτ = Yij − f(Xij , β̂(τ)), where

f(Xij , β̂(τ)) represents the common predicted value under the null hypothesis. The
common quantile regression function under the null hypothesis is estimated from the
two sets of data combined. f1(Xij , β̂(τ)) and f2(Xij , β̂(τ)) are the estimators of the first
and the second quantile regression functions respectively.



Electronic Journal of Applied Statistical Analysis 21

Figure 1: (a)quantile regression curves correspond with model f(x) = 4x2 and the lines
from down to upper are τ = 0.05, 0.25, 0.50, 0.75, 0.95.(b) plot of two data sets,
stars present the model f1(x) = 4x2 +2, circles present the model f2(x) = 4x2,
f1(Xij , β(τ)), f2(Xij , β(τ)) and f(Xij , β(τ)) are the first quantile regression
function, the second quantile regression function, and the common quantile
regression function with τ = 0.25 respectively.

3 Bootstrap and Simulation Studies

The present study follows Pardo et al. (2007), Freedman (1981), Silverman and Young
(1987), Akritas and Van Keilegom (2001), Lloyd (2014), Efron and Tibshirani (1994)
applying bootstrapping for estimating the critical value of the test statistic Aksτ , because
bootstrap can be use to estimate the critical value when the distribution of the test
statistics are unknown, and the p-value from bootstrap more accurate than standard p
- value. In addition the estimators from bootstrap are consistent . The procedures are
as follows:

Assume the bootstrap replication b = 1,..., B (B=300), for j =1, 2, i = 1,..., nj , and
construct the new response under the null hypothesis form the equation:

Y ∗
ij,b = fj(X,β) + ε∗ij,b, j = 1, 2, i = 1, ..., nj . (2)
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From equation (2), the quantile regression function Y ∗
ij,b = fj(X,β(τ)) + ε∗ijτ,b(τ) can be

determined by assigning τ = 0.05, 0.25, 0.50, 0.75 and 0.95. In this study, we determine
the six regression function (fj(X,β)) for testing the equality of the quantile regression
functions. The first three are applied when the null hypothesis is confirmed, whereas
the other three are applied when the alternative hypothesis is confirmed.

(1) f1(x) = f2(x) = 4x.
(2) f1(x) = f2(x) = 4x2.
(3) f1(x) = f2(x) = 4ex.
(4) f1(x) = 4x, f2(x) = 4x+ 2.
(5) f1(x) = 4x2, f2(x) = 4x2 + 2.
(6) f1(x) = 4ex, f2(x) = 4ex + 2.
The distribution of errors εij,b, i = 1, ..., nj , j = 1, 2 are as follows: 1)Let 100%

of the distribution of errors of each set of data are the standard normal distribution,
εi1 ∼ N(0, 1) and εi2 ∼ N(0, 1), i = 1, ..., nj , j = 1, 2. 2) The errors distribution have
heavy tailed, let 95% of the distribution of errors of each set of data are the standard
normal distribution, and let the remaining 5% of the distribution of errors are the Cauchy
distribution, and 3)The errors distribution have heavy tailed, let 90% of the distribution
of errors of each set of data are the standard normal distribution, and let the remaining
10% of the distribution of errors are the Cauchy distribution. The probability density
function of the Cauchy distribution is in the form of f(x) = 1

πb[1+(X−a
b

)2]
, a=0 and

b=1. For j =1, 2, i = 1,.., nj , calculate the value of the test statistics Aksτ from the
bootstrappling samples Xij , Y

∗
ij,b in each τ th conditional quantile function. Let A∗

ksτ,b

be the order statistics of A∗
ksτ(1),...,A

∗
ksτ(b) and A∗

ksτ(1−α)B approximate the (1 − α)-
quantile of the distribution of Aksτ under the null hypothesis. Calculate the value of
the test statistic when the τ th conditional quantile: τ = 0.05, 0.25, 0.50, 0.75 and 0.95.
Iterate the test statistic Aksτ 1,000 times. Display the rejection proportion when the
null hypothesis is confirmed and when the alternative hypothesis is confirmed.

4 Results

As for the ratio of rejection proportion when the null hypothesis is confirmed under
different conditions, it is found that the type I error is closer to 0.05 when the sample
size is larger. In addition, the figure is higher when the τ conditional quantile equals 0.25,
0.50, and 0.75 than when it is equal to 0.05 and 0.95. However, when the distribution
of errors are heavy-tailed the ratio of hypothesis rejection slightly declines from (95%
standard normal errors+ 5% Cauchy errors) to (90% standard normal errors + 10%
Cauchy errors) for model (1), model (2), and model (3). So, the impact of the heavy
tailed distribution of errors, the condition quatile regression function is more robust.
The result of rejection proportion are displayed in Table 1, Table 2, and Table 3.
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Table 1: Rejection proportions under the null hypothesis (type I error) of model ( 1) :
f1(x) = f2(x) = 4x, α = 0.05 .

sample size τ 100% N(0,1) 95% N(0,1)+5%Cauchy 90% N(0,1)+10%Cauchy

(20,20) 0.05 0.034* 0.034* 0.032*

0.25 0.042 0.041 0.041

0.50 0.041 0.041 0.041

0.75 0.043 0.040 0.040

0.95 0.033* 0.035* 0.034*

(60,60) 0.05 0.037 0.035* 0.034*

0.25 0.048 0.045 0.044

0.50 0.045 0.043 0.042

0.75 0.043 0.040 0.040

0.95 0.035* 0.034* 0.034*

(100,100) 0.05 0.039 0.037 0.036

0.25 0.050 0.048 0.048

0.50 0.048 0.047 0.047

0.75 0.048 0.046 0.045

0.95 0.039 0.039 0.038

*The type I error out of control interval.
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Table 2: Rejection proportions under the null hypothesis (type I error) of model ( 2) :
f1(x) = f2(x) = 4x2, α = 0.05 .

sample size τ 100% N(0,1) 95% N(0,1)+5%Cauchy 90% N(0,1)+10%Cauchy

(20,20) 0.05 0.037 0.037 0.035*

0.25 0.037 0.038 0.037

0.50 0.041 0.040 0.040

0.75 0.041 0.040 0.039

0.95 0.032* 0.030* 0.030*

(60,60) 0.05 0.039 0.037 0.037

0.25 0.042 0.040 0.040

0.50 0.045 0.043 0.042

0.75 0.046 0.044 0.043

0.95 0.037 0.034* 0.035*

(100,100) 0.05 0.042 0.041 0.041

0.25 0.046 0.044 0.044

0.50 0.048 0.047 0.047

0.75 0.040 0.040 0.040

0.95 0.039 0.036 0.035*

*The type I error out of control interval.
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Table 3: Rejection proportions under the null hypothesis (type I error) of model (3) :
f1(x) = f2(x) = 4ex, α = 0.05 .

sample size τ 100% N(0,1) 95% N(0,1)+5%Cauchy 90% N(0,1)+10%Cauchy

(20,20) 0.05 0.032* 0.030* 0.030*

0.25 0.033* 0.029* 0.029*

0.50 0.035* 0.034* 0.033*

0.75 0.037 0.035* 0.035*

0.95 0.031* 0.028* 0.028*

(60,60) 0.05 0.035* 0.034* 0.033*

0.25 0.037 0.035* 0.035*

0.50 0.042 0.040 0.041

0.75 0.046 0.044 0.042

0.95 0.037 0.035* 0.035*

(100,100) 0.05 0.042 0.041 0.041

0.25 0.046 0.045 0.045

0.50 0.048 0.047 0.047

0.75 0.040 0.039 0.039

0.95 0.039 0.032* 0.033*

*The type I error out of control interval.

With regards to the rejection proportion when the alternative hypothesis is confirmed
under the different conditions, the findings reveal that the power of the test is closer
to 1.00 when the sample size is larger. Additionally, the figure is higher when the
τ th conditional quantile is equal to 0.25, 0.50, and 0.75 than when it equals 0.05 and
0.95. However, when the distribution of errors are heavy-tailed the ratio of hypothesis
rejection slightly declines from (95% standard normal errors+ 5% Cauchy errors) to (90%
standard normal errors + 10% Cauchy errors), for model (4), model (5), and model (6).
Namely, quatile regression function more robust as the distribution of errors are heavy
tailed. The result of rejection proportion are displayed in Table 4, Table 5, and Table 6.
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Table 4: Rejection proportions under the alternative hypothesis (power of the test) of
model (4) : f1(x) = 4x, f2(x) = 4x+ 2, α = 0.05 .

sample size τ 100% N(0,1) 95% N(0,1)+5%Cauchy 90% N(0,1)+10%Cauchy

(20,20) 0.05 0.700 0.675 0.673

0.25 0.750 0.730 0.730

0.50 0.780 0.772 0.770

0.75 0.690 0.700 0.690

0.95 0.600 0.590 0.590

(60,60) 0.05 0.730 0.710 0.710

0.25 0.900 0.880 0.878

0.50 0.800 0.800 0.798

0.75 0.820 0.800 0.800

0.95 0.740 0.725 0.723

(100,100) 0.05 0.790 0.784 0.784

0.25 0.930 0.920 0.918

0.50 0.890 0.877 0.877

0.75 0.900 0.889 0.885

0.95 0.790 0.770 0.770
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Table 5: Rejection proportions under the alternative hypothesis (power of the test) of
model (5) : f1(x) = 4x2, f2(x) = 4x2 + 2, α = 0.05 .

sample size τ 100% N(0,1) 95% N(0,1)+5%Cauchy 90% N(0,1)+10%Cauchy

(20,20) 0.05 0.650 0.640 0.640

0.25 0.780 0.760 0.757

0.50 0.800 0.790 0.788

0.75 0.780 0.770 0.770

0.95 0.670 0.660 0.658

(60,60) 0.05 0.741 0.730 0.730

0.25 0.900 0.888 0.885

0.50 0.870 0.870 0.868

0.75 0.850 0.840 0.838

0.95 0.752 0.746 0.746

(100,100) 0.05 0.800 0.788 0.785

0.25 0.920 0.909 0.905

0.50 0.890 0.870 0.870

0.75 0.910 0.900 0.890

0.95 0.770 0.760 0.760
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Table 6: Rejection proportions under the alternative hypothesis (power of the test) of
model (6) : f1(x) = 4ex, f2(x) = 4ex + 2, α = 0.05 .

sample size τ 100% N(0,1) 95% N(0,1)+5%Cauchy 90% N(0,1)+10%Cauchy

(20,20) 0.05 0.652 0.644 0.640

0.25 0.780 0.770 0.770

0.50 0.700 0.780 0.768

0.75 0.765 0.770 0.770

0.95 0.672 0.650 0.648

(60,60) 0.05 0.742 0.739 0.743

0.25 0.895 0.890 0.888

0.50 0.870 0.870 0.868

0.75 0.848 0.834 0.845

0.95 0.747 0.740 0.745

(100,100) 0.05 0.791 0.788 0.786

0.25 0.918 0.913 0.910

0.50 0.888 0.880 0.878

0.75 0.909 0.898 0.896

0.95 0.768 0.765 0.763

As for the difference in the rejection proportion between the conditional median and
the conditional mean regression functions (bracketed numbers) under the null hypothesis,
it is found that when the distribution of errors form a standard normal distribution, the
test statistic derived from the conditional mean regression function yields a relatively
low type I error value close to 0.05. Additionally, the test statistic performs better as the
sample size becomes larger. However, when the distribution of errors are heavy-tailed
: 1) 95% standard normal errors+ 5% Cauchy errors, and 2) 90% standard normal
errors + 10% Cauchy errors, the ratio of hypothesis rejection slightly declines from
(95% standard normal errors+ 5% Cauchy errors) to (90% standard normal errors +
10% Cauchy errors) for model (1), model (2), and model (3). Moreover, this impact is
found to be greater for the test statistic derived from the conditional mean regression
function than for that obtained from the conditional median regression function. The
results are displayed in Table 7.
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Table 7: Rejection proportion under the null hypothesis (type I error) compare with the
test statistic from the conditional median and conditional mean,α = 0.05.

sample size model 100% N(0,1) 95% N(0,1)+5%Cauchy 90% N(0,1)+10%Cauchy

(20,20) (1) 0.041 0.041 0.041

(0.042) (0.035*) (0.030*)

(60,60) 0.045 0.043 0.042

(0.049) (0.040) (0.039)

(100,100) 0.048 0.047 0.047

(0.049) (0.044) (0.045)

(20,20) (2) 0.041 0.040 0.040

(0.043) (0.038) (0.035*)

(60,60) 0.045 0.043 0.042

(0.047) (0.041) (0.040)

(100,100) 0.048 0.047 0.047

(0.049) (0.041) (0.040)

(20,20) (3) 0.035* 0.034* 0.033*

(0.040) (0.032*) (0.028*)

(60,60) 0.042 0.040 0.041

(0.047) (0.039) (0.035*)

(100,100) 0.048 0.047 0.047

(0.049) (0.044) (0.040)

*The type I error out of control interval.

As regards the difference in the rejection proportion between the conditional median
regression function and the conditional mean regression function (bracketed numbers)
under the alternative hypothesis, it is found that when the distribution of errors form
a standard normal distribution, the test statistic derived from the conditional mean
regression function yields a high power of the test value close to 1.00. Additionally, the
test statistic performs better with a larger sample size. However, when the distribution of
errors are heavy-tailed : 1) 95% standard normal errors+ 5% Cauchy errors and 2) 90%
standard normal errors + 10% Cauchy errors, the ratio of hypothesis rejection slightly
declines from (95% standard normal errors+ 5% Cauchy errors) to (90% standard normal
errors + 10% Cauchy errors) for model(4), model(5), and model(6). Furthermore, the
impact of heavy-tailed distribution of errors are greater for the test statistic derived from
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the conditional mean regression function than for that obtained from the conditional
median regression function. The results are displayed in Table 8.

Table 8: Rejection proportion under the alternative hypothesis (power of the test)
compare with the test statistic from the conditional median and conditional
mean,α = 0.05.

sample size model 100% N(0,1) 95% N(0,1)+5%Cauchy 90% N(0,1)+10%Cauchy

(20,20) (4) 0.780 0.772 0770

(0.800) (0.770) (0.765)

(60,60) 0.800 0.800 0.798

(0.830) (0.794) (0.790)

(100,100) 0.890 0.877 0.877

(0.920) (0.870) (0.865)

(20,20) (5) 0.800 0.790 0.788

(0.800) (0.780) (0.778)

(60,60) 0.870 0.870 0.868

(0.900) (0.862) (0.860)

(100,100) 0.890 0.870 0.870

(0.910) (0.868) (0.865)

(20,20) (6) 0.700 0.780 0.768

(0.800) (0.775) (0.770)

(60,60) 0.870 0.870 0.868

(0.900) (0.868) (0.865)

(100,100) 0.888 0.880 0.878

(0.915) (0.878) (0.873)
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5 Application of the Data

The actual data used for testing the test statistic Aksτ are comprised of two data sets:
the first, the independent variable X representing the number of households in each of
the 76 provinces of Thailand for 2002 and 2004, the dependent variable Y representing
the number of population in each of 76 provinces of Thailand for 2002 and 2004. The
first data set is retrieved from the census conducted by the National Statistical Office of
the Prime Minister of Thailand in 2002 and 2004 (National Statistical Officer Thailand,
2002) and (National Statistical Officer Thailand, 2004).The second, the independent
variable X representing the relative humidity of 46 provinces of Thailand for 2009 and
2010, and the dependent variable Y representing the rainfall in each 46 provinces of
Thailand in 2009 and 2010. The second data set is retrieved from Thai Meteorological
Department (Thai Meteorological Department, 2010). To calculate the p-value of the
test statistic Aksτ , the conditional median regression function and the conditional mean
regression function are estimated from 1,000 replications of bootstrapping.

Figure 2: (a) illustrates the scatter plot and the conditional mean regression function of
the number of household and the number of population in each province. The
data for 2004 are represented by circles and the solid line, whereas those for
2002 are represented by stars and the dash line (b) Illustrates the scatter plot
and the conditional median regression function of the number of household and
the number of population in each province. The data for 2004 are represented
by circles and the solid line, whereas those for 2002 are represented by stars
and the dash line.
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From Figure 2(a). It can be seen that the relationship between the two variables in
both years are almost the same and nearly form a single line. Also, the p-value from
1,000 replications of bootstrapping equals 0.915. This implies that, conditional mean
regression function between two sets of data be equal, two data sets have similar relation-
ship between dependent and independent variables. From Figure 2(b). It can be seen
that in comparison with the conditional median regression function, the conditional me-
dian regression function leads to more discrepancies in the regression lines and the lower
p-value of 0.890 from 1,000 replications of bootstrapping. This implies that, conditional
median regression function between two sets of data be equal, two data sets have similar
relationship between dependent and independent variables. In spite of this difference, it
can be said that the conditional mean and the conditional median regression functions
yield similar results, namely, accept the null hypothesis, the relationship between two
regression functions not different, when we consider about the distribution of the errors,
from conditional mean regression function, the result are displayed in Table 9 and Figure
3.

Table 9: The distribution of error of the first data set : The test statistic for testing the
normality of the distribution of errors that estimate from conditional mean.

data εijτ K-S p-value Kurtosis

No. of population (Y), No. of households (X) in 2002 εi1τ 0.083 0.200 0.636

No. of population (Y), No. of households (X) in 2004 εi2τ 0.093 0.178 0.920

over all data ε0ijτ 0.099 0.069 0.740

From Table 9. According to Kolmogorov-Smirnov test statistic, the distribution of errors
that estimate from conditional mean regression function of the first regression function
εi1τ , the second regression function εi2τ , and the common regression function ε0ijτ are
normal distribution. When we consider about the kurtosis, the result was found that
the kurtosis value < 3, this implies that the distribution of errors is normal distribution
that not heavy tailed. The distribution of errors (histogram and normal probability) are
displayed in Figure 3.



Electronic Journal of Applied Statistical Analysis 33

Figure 3: (a) and (d) illustrates the histogram and normal probability plot of the dis-
tribution of errors from the conditional mean of the relationship between the
number of households (X) and number of population (Y) in 2002. (b) and
(e) illustrates the histogram and normal probability plot of the distribution of
errors from the conditional mean of the relationship between the number of
households (X) and number of population (Y) in 2004. (c) and (f) illustrates
the histogram and normal probability plot of the distribution of errors from
the conditional mean of the relationship between the number of households
(X) and number of population (Y) of common regression function.
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Figure 4: (a) illustrates the scatter plot and the conditional mean regression function of
the relative humidity and the rainfall in each province. The data of 2009 are
represented by circles and the solid line, whereas those for 2010 are represented
by stars and the dash line. (b) illustrates the scatter plot and the conditional
median regression function of the relative humidity and the rainfall in each
province. The data of 2009 are represented by circles and the solid line, whereas
those for 2010 are represented by stars and the dash line.

Figure 4 (a) presents the conditional mean regression functions of the relative humidity
and the rainfall in each province, compare with 2009 and 2010. It can be seen that the
relationship between two groups in 2009 and 2010 are different. Also, the p-value from
1,000 replications of bootstrapping equals 0.0472. Figure 3(b). Shows the conditional
median regression function of the relative humidity and the rainfall in each province,
compare with 2009 and 2010, It can be seen that the relationship between two groups in
2009 and 2010 are different. Also, the p-value from 1,000 replications of bootstrapping
equals 0.0465, it can be said that the conditional mean and the conditional median
regression functions yield similar results, namely, accept the alternative hypothesis: two
regression functions have different at 0.05 significant level, when we consider about
the distribution of the errors, from conditional mean regression function, the result are
displayed in Figure 5 and Table 10.
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Figure 5: (a) and (d) illustrates the histogram and normal probability plot of the distri-
bution of errors from the conditional mean of the relationship between the rela-
tive humidity (X) and rainfall (Y) in 2009. (b) and (e) illustrates the histogram
and normal probability plot of the distribution of errors from the conditional
mean of the relationship between the relative humidity (X) and rainfall (Y) in
2010. (c) and (f) illustrates the histogram and normal probability plot of the
distribution of errors from the conditional mean of the relationship between
relative humidity (X) and rainfall (Y) of common regression function.
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Table 10: The distribution of error of the second data set : The test statistic for testing
the normality of the distribution of errors that estimate from conditional mean.

data εijτ K-S p-value Kurtosis

rainfall (Y), relative humidity (X) in 2009 εi1τ 0.115 0.154 4.374

rainfall (Y), relative humidity (X) in 2010 εi2τ 0.105 0.200 6.255

over all data ε0ijτ 0.116 0.143 4.147

Figure 5 illustrates the histogram and normal probability plot of the distribution of
errors from the conditional mean of the relationship between the relative humidity (X)
and rainfall (Y) in 2009 and 2010. It can be seen that the distribution of errors are
normal distribution that heavy tailed, and the Kolmogorov-Smirnov test statistic from
Table 10 show that: the distribution of errors that estimate from conditional mean re-
gression function of the first regression function εi1τ , the second regression function εi2τ ,
and the common regression function ε0ijτ are normal distribution at 0.05 significant level.
When we consider about the kurtosis, the result was found that the kurtosis value > 3,
this implie that the distribution of errors is normal distribution that heavy tailed. It can
be said that comparing the regression function with conditional mean (p - value=0.0472)
and the conditional median regression functions (p - value = 0.465) yield very similar re-
sults. This implies that, with the heavy-tailed errors distribution, the conditional median
regression function is more robust and give the performance similar to conditional mean.

From the second data sets, we simply compares the equality of two quantile regression
functions that having the relationship between the relative humidity and rainfall in 2009
and 2010 as the maximum and minimum value : extream quantile regression function
such as τ = 0.95 and 0.25. Testing the equality of two quantile regression function as
τ = 0.95 and 0.25 are displayed in Figure 6.
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Figure 6: (a) illustrates the scatter plot and the conditional quatile regression function
(τ = 0.95) of the relative humidity and the rainfall in each province. The data
of 2009 are represented by circles and the solid line, whereas those for 2010 are
represented by stars and the dash line. (b) illustrates the scatter plot and the
conditional quatile regression function (τ = 0.25) of the relative humidity and
the rainfall in each province. The data of 2009 are represented by circles and
the solid line, whereas those for 2010 are represented by stars and the dash
line.

Figure 6(a) pesents for testing the equality of two quantile regression functions as τ =
0.95 of the relative humidity and the rainfall in each province, compare with 2009 and
2010. It can be seen that the relationship between two groups in 2009 and 2010 are
different. Also, the p-value from 1,000 replications of bootstrapping equals 0.028, and as
the τ = 0.95 the quantile regression function in 2009 is higher than 2010. Figure 3(b).
pesents for testing the equality of two quantile regression functions as τ = 0.25 of the
relative humidity and the rainfall in each province, compare with 2009 and 2010. It can
be seen that the relationship between two groups in 2009 and 2010 are different. Also,
the p-value from 1,000 replications of bootstrapping equals 0.046, and as the τ = 0.25
the quantile regression function in 2010 is higher than 2009. It can be said that as the
extreme conditional quatile: τ = 0.95 and τ = 0.25, accept the alternative hypothesis:
two regression functions have different at 0.05 significant level.
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6 Discussion Conclusions

The present study compares the conditional mean and the conditional median regression
functions as well as examines the impact of the distribution of errors by determining the
difference between the empirical distribution function of errors of each set of data and the
common regression function. The results indicate that power of the test increases as the
sample size becomes larger. Additionally, when the distribution of errors are heavy-tailed
the ratio of hypothesis rejection slightly declines from (95% standard normal errors+
5% Cauchy errors) to (90% standard normal errors + 10% Cauchy errors), and under
normal conditions, the test statistic estimated from the conditional mean regression
function performs better than that obtained from the conditional median regression
function. In contrast, with heavy-tailed distribution of errors, the conditional median
regression function is more robust, namely the impact of heavy-tailed distribution of
errors are greater for the test statistic derived from the conditional mean regression
function than for that obtained from the conditional median regression function. The
approach presented in this research can provide guidelines for other studies aiming to
compare two regression functions, especially conditional quantile regression functions
subject to such conditions as heavy-tailed distribution of errors. It can also be applied
for other special purposes, such as analyzing only the high values or only the low values
in a set of data, and in the next research, the regression model that flexible assumption
and good fitted such as nonparametric regression should be considered, and applying
the quantile regression function for detection the outlier is more interesting.
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