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A forecasting procedure based on a wavelet radial basis neural network
is proposed in this paper. The MODWT result becomes an input of the
model. The smooth part constructs the main pattern of forecasting model.
Meanwhile the detail parts construct the fluctuation rhythm or disturbances.
The model considers that each of the transformation level contribute to the
forecasting result independently. The nonlinearity properties included in the
MODWT result is controlled by radial basis functions. The LM test is used
to explore the number of wavelet coefficient clusters in every transformation
level. The membership of cluster is determined by the k—means method. The
least square method (OLS or NLS) can be used to estimate the parameters
of model.
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1 Introduction

Economical activity, such as stock market, commodity market and currency market,
can be performed as random variables. For examples, stock return rate, stock price
indices, commodity production number, commodity price, commodity demand number,
and currency exchange rate refer to random variables. The random variables observed
on regular time periods will construct time series data. Theory and methods of time
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series grow up continuously since Box and Jenlins’ historical book, Time Series Analysis:
Forecasting and Control. In general, the Box-Jenkins method, a linear class model, works
well when the process fulfills stationery condition.

It is found that the economical data generally has nonlinear properties and the vari-
ance changes over time (heteroscedastic). In this condition, the Box-Jenkins method
may provide a less satisfying solution. There are some proposed methods to address
this problem of nonlinearity. Threshold Autoregressive (TAR) model is one such exam-
ples. The model assumes that the process jumps in some alternative functions which
refer to the threshold domain value (Tong, 1990). Engel (1982) proposed a time series
model which accommodates this heteroscedastic problem. The model is called as ARCH
(autoregressive conditional heteroscedasticity) model refer to the assumption that the
residual of process has a variance which is dependent on time. Therefore, the ARCH
model consists of both the mean part model and the variance part model. The gen-
eralization of ARCH model is proposed by Bollerslev (1986) and called as GARCH
(Generalized ARCH) model. All models mentioned in this paragraph are parametric
models which have model parameter assumptions.

Non-parametric class models are sometimes preferred to parametric class model. Ex-
amples of recently non-parametric models are the neural network model (Haykin, 1999),
wavelet model (Murtagh et al., 2004), fuzzy model (Popoola, 2007) and hybrids of these
models. Usually, non-parametric methods are simpler in the analytical sense but involve
more numerical computation. Fortunately, some computer software and hardware are
available to support the computation. The first step to decide to whether to use a linear
model is to identify whether there is a nonlinearity. Terésvirta et al. (1993) proposed a
test to determine nonlinearity with neural network approximation. Lee et al. (1993) use
a neural network approximation with random weights to construct the test.

This paper proposes a development of procedure inspired by wavelet neuro model
(Murtagh et al., 2004). The wavelet coefficients selected from each level are treated
as univariate or multivariate random variables and become to inputs for radial basis
nodes. The model is called wavelet radial basis neural network (WRBNN) model. The
use of wavelet to build a function was proposed by Ogden (1997). The use of radial
basis function with univariate inputs to approximate a nonlinear function in the neural
network structure was proposed by Haykin (1999). The WRBNN model combines the
of wavelet, radial basis function and neural network into one structure. R software (R
Core Team, 2014) with the wavelets package (Aldrich, 2013) is used for computations
needs.

2 Nonlinear Time Series Model

Box and Jenkins have been are pioneers in mathematical time series modeling. Usually,
this model is called as Autoregressive Moving Average (ARMA). If the process fulfills the
stationery condition, a solution can be reached using the ARMA model. Differentiation
of data is common to obtain a stationary condition. The general form of the ARMA
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model described in Eq. (1) is included to linear model class.

p q
=pu+ Z%‘Y},ﬂ‘ + Z Oier—i + € (1)
i—1 j=1

where ¢, is a normal random variable with a mean of zero and a fixed variance o2.

In fact, there is no guarantee that the process can be modeled by linear model class,
which provides motivation to discover nonlinear models. The first heteroscedastic model,
the ARCH (Autoregressive Conditional Heteroscedasticity) model, was proposed by En-
gel (1982). This model assumes that the residual €; of Eq. (1) is nonlinear and dependent
on the last residuals as described in Eq. (2).

€t — OtV (2)

where v; ~ N(0,1) and variance o7 depends on time, as described in Eq. (3).

o = ag + Z an€r_, (3)
n=1
Bollerslev (1986) has developed the ARCH model in Eq. (3) into GARCH (Generalized
ARCH) model as described in Eq. (4).

r s
O-tz =ap+ Z ﬁno—tQ—n + Z ane%—n (4)
n=1 n=1

The existences of heteroscedastic properties can be investigated using the LM test which
was developed by Lee et al. (1993).
A nonlinear model can also consist of dependencies as described in Eq. (5).

P
Vi=p+ ) wid(Yi)+e (5)

i=1
where & is the nonlinear function such as logistic function, exponential function, high
polynomial and radial basis function. The use of the radial basis function in nonlinear

models can be found in Haykin (1999) with special notes can be found in Orr (1996;
1999).

3 Wavelet Based Approximation

Wavelet (mother wavelet) is a small wave function that can construct an orthonormal
bases for Lo(R) space (Daubechies, 1992). Every mother wavelet has a unique father
wavelet or scaling function. Wavelet is usually symbolized byt and ¢ for father wavelet.
Mother and father wavelets build a wavelet family through translation and dilatation
functions as described in Eq. (6).

Yir(t) = 27Ep7t— k) (6)
bin(t) = 275p(277t—k)
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The construction of wavelet bases for La(R) is inspired by the construction of Fourier
bases for Ly|—m, 7] using sines and cosines functions (Ogden, 1997). The wavelet prop-
erties supporting the wavelet bases construction described in Eq. (7).

| ousl6smtt) = G ™)
/OO ¢ik(t)Vrm(t) = 0

/_ Vi Pim(t) = 8;100m

%_{ 0, 1#]

where

1, i=j

Wavelet and scaling function combine to create a multiresolution space where every
function f € La(R) can be described as a linear combination of dilation-translation form
of wavelets. This formulation can be seen in Eq. (8).

FO) = D condup®) + D) dirtbin() (8)
kez j<Jkez

Multiresolution space containing Eq. (8) can be described in Eq. (9)
LQ(R)Qsl@Dl:SQ@DQ@Dl:SJ@DJEBDJ,1@'“@D1 (9)

where @ describes an orthogonal sum of two vector spaces. S describes the main pattern
of function, meanwhile D;, j = 1,2,--- , J describe the detail parts or residuals pattern of
the function (Daubechies, 1992). The main pattern consists of a smooth function which
usually can be approximated using a linear combination of scaling coefficients c ;. The
disturbances of the original function are carried out in the detail pattern, and can be
approximated using a linear combination of wavelet coefficients d;;. The coefficients
¢y and d;;, described in Eq. (8) can be computed by Eq. (10).

i = [ 10suta (10)
djk = /_ N F@)Y;x(t)dt

3.1 Discrete Wavelet Transform

In any wavelet, finite even points can be chosen to fulfill certain properties called a
wavelet filter. It is usually symbolized by Eq. (11) and must fulfill the properties
described in Eq. (12) (Percival and Walden, 2000).

h = [ho,h1, -, hp_1] (11)
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which fulfill the following properties

L—1
hi = 0 (12)
i=0
L—1
= 1
=0

L—1
> hihison = 0, nel
1=0

The scaling filter, which is symbolized by g = [go, g1, - - , gr—1], can be generated from
wavelet filter. The relationship between h and g can be described in Eq. (13).

g = (—D)"hp (13)

The filter described in Eq. (11) is the first level filter. Therefore, it is symbolized by
h(M). The up-sampled form of h") is defined by inserting 0 (zero) between filter values
not equal to 0. Therefore, the up-sampled form of Eq. (11) can be described in Eq. (14)

h() = [ho,0,h1,0,-+,0,hp—1,0,hp 1] (14)
The 2™d level filter is constructed by Eq. (15).
2 1
h® = h{)xg (15)

where * is a convolution operator. In general, wavelet and scaling filters are constructed
by Eq. (16).

o
h = hﬁip )x g (16)
g = giVxg

The collaboration of wavelet and scaling filters builds discrete wavelet transformations
(DWT). Consequently, every discrete realization of a function f € Lo(R) with fixed
time increment can be decomposed into smooth part (S) and detail parts (D). Let
Y = {V;}Y, describes a discrete realization of function f € La(R) where N > L and
N = 27 for certain integer J. DWT at level j can be shown in Eq. (17)

D = H; Y (17)
Nx1 NxNNx1

where H; is a transformation matrix at level j and D is a transformation result or
wavelet coefficients matrix.

The transformation matrix at level j = 1 can be written as H; = [jfl,gl]T. The first
row until (%)th of Hi, j=1,2,---,J constitutes a two-step translations of h(®) as
described in Eq. (18)
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hi ho O O -+ 0 0 hr—1 hp—o - hs ho
hs ho hi ho 0 s 0 0 hr—1 hp—o -+ hy

A= . (18)
0 0 s 0 hr—1 hrp_o s hi ho

The (§ + 1) row until N** row of H; constitutes a two-step translations of g as
described in Eq. (19).

91 9 0 0 - 0 0 9.1 9r—2 -+ g3 @2
93 92 g1 9 0 - 0 0 901 9.2 -+ 94

G=1 . (19)
0 0 e 0 9r.-1 9gr—2 g1 9o

Furthermore, ¢ will be decomposed to 7% and % whenever Hs is carried out. 7745
and % constitutes a four-step translations of wavelet filter and scaling filter in 2"? level,
repectively. The process can be continued to obtain H; = [%,%]T where JZ; and ¥;
constitute 27 periodical step of wavelet filter and scaling filter in j** level, respectively.
Furthermore, Eq. (17) can be written as Eq. (20).

D

T T T
Aa| Y=t ts| Y= = 9] Y (20)

— [Dl Sl}T: [D1 Do S2:|T:,..: [Dl Dy --- Dy SJ}T

3.2 The Maximal Overlapping Discrete Wavelet Transform

The Maximal Overlapping Discrete Wavelet Transform (MODWT) has been judged
to possess some additional worth compared to the DWT in time series analysis. For
instance, MODW'T does not be subsampled by two, and is well defined for any sample
size. The number of coefficients in every level is equal to the sample size (Percival and
Walden, 2000; Serroukh, 2012).

Let h and g refer to MODWT wavelet filter and scaling filter, respectively. In every
transformation level, there is a relationship between DWT filter and MODWT filter as
described in Eq. (21)

~ h
h=— and
V2 !

The formulation of MODWT is described by

(21)

(1=}
Il
Silow

D = HY (22)
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In the j—th transformation level, the dimensions of ﬁj are (j+1)N x N. This transfor-
mation matrix can be partitioned into j 4 1 submatrices, refering to each transformation
level, so that the MODWT descibed in Eq. (22) can be written as

. . .T _ . AT - . T
. 1T . - 1T .. . 1T
:[Dl 51} Z[DngSg} :---:[Dng---DJSJ}
For each index 4, the submatrces # and % constitutes one periodic step of the wavelet

filter and the scaling filter at the i—th level, respectively. For instance, the submatrix
%4 can be described as follows:

ho 0 0 0 - 0 0 hry hpo -+ hy M

5 hy hg O 0 0 - 0 0 hr_y hp_o --- hs
A= | 1 (24)

0 0 0 --- 0 0 hrq hro hr-s - hy hg

3.3 The MODWT Forecasting Method for Time Series

Generally, forecasting is the main purpose of modeling a process. There are various
ways to make forecasts, ranging from naive models to complicated models. This paper
is mainly concerned with the use of MODWT for time series forecasting as described in
the following equation (25) (Murtagh et al., 2004; Renaud et al., 2003).

J 4] [Asqal
Yip1 = Z Z&j,kdj,tf%(kfl) + Z AJ41,kCT 27 (k—1) T € (25)
j=1 k=1 k=1

The highest transformation level is denoted by J. The coefficient set chosen at level j
is denoted by A;. For instance, Eq. (25) will become Eq. (26) when J =4 and |A;| =2
for j =1,2,3,4,5.

Yir1 = aiidig+arpdig—2 +agdos + azado g +
aszdss + azod3 g + as1das + asods—16 +

a5,1C4¢ + a52C4 416 + € (26)

The parameter estimation for Eq. (26) can be calculated by the method of least squares
(LSE) or the Maximum Likelihood method when the distribution of ¢ is known. Rukun
et al. (2003) showed that the data with higher autocorrelation tends to have a lower sum
of squares error when forecast by the MODWT model. Table (1) shows a summary of
the statistics for this wavelet based model.
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Table 1: Staistics for the wavelet based model

Variable Coefficient Std. Error t value Prob
X1 1.15732 0.11383 10.167 0.000000
X2 -0.01144 0.12492  -0.092 0.92707
X3 1.14253 0.10770  10.608 0.000000
X4 -0.34138 0.11453  -2.981 0.00304
X5 1.02910 0.08725 11.794 0.000000
X6 -0.43924 0.07592  -5.785 0.000000
X7 1.15439 0.05657  20.405 0.000000
X8 -0.12914 0.03307  -3.905 0.00011
X9 1.01673 0.01704 59.653 0.000000

X10 -0.04169 0.01626  -2.564 0.01068

Residual standard error: 1.019 on 426 degrees of freedom
Multiple R-squared: 0.9687, Adjusted R-squared: 0.968
F-statistic: 1321 on 10 and 426 DF, p-value: | 2.2e-16

4 Wavelet Radial Basis Neural Network Model

The role of a radial basis as an activation function in a radial basis neural network model
has been discussed in some publications(e.g. Haykin, 1999; Samarasinghe, 2006). An
input nearer to a radial center will result a bigger response. So, the radial basis functions
in the model play the role of an input classifier into homogeneous groups depending on
each radial center. Let X describe a random variable which will be processed by a radial
basis function. Usually, it is transformed to standard form:

T—p

r=— c>0, z,ueR (27)

Some kinds of radial basis functions can be seen in Egs. (28), (29), and (30).
Gaussian function:
2
O(r) = exp (—2> (28)

Multiquadrics function:

O(r) = V1412 (29)
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Multiquadrics inverse function:
O(r) = —— (30)
T =
V1412

If X represents a p—variat random variable, then p represents its mean vector, and

0?2 = ¥ represents its variance-covariance matrix. Furthermore, r denote the Maha-
lanobis distance as defined in Eq. (31).
T:% = (X - ”)TE?I(X - y’)a X7 ne RP (31)

The wavelet based forecasting descibed in Eq. (26) is included in the class of lin-
ear models. Sometimes it does not adequately approximate the main part and/or the
detailed part of the original function in the linear sense. This is to sufficient reason to de-
velope Eq. (25) into a nonlinear form consisting of a main part and a detailed part. The
model is called the wavelet radial basis neural network (WRBNN) model. This refers to
the use of wavelets as a pre-processing tool, radial basis functions as nonlinear transfer
functions, and neural network rule for optimizing the parameter estimation. Without
loss of generality, there will be developed a WRBNN model with inputs from the results
of MODWT at the transformation level of J = 4 and A; = 2 for all j. For the sake
of simplificity, the variables in Eq. (26) will be redefined to refer to the transformation
level as described in Eq. (32).

New symbol Old synbol New symbol Old synbol

|
Y; Yit1 !
X1 dy g | Xo dy—2
X3 do | X4 da -4 (32)
X5 ds | X6 dsi—s8
X7 dat ! Xs dyt—16
Xo Cat | Xi0 C4t—16

The architecture of the proposed model can be seen in Figure 1. The input variables of
the WRBNN model are similar to those of the wavelet based model described in Eq. (26)
(see Murtagh et al. (2004)). There are two layers in the model. The first layer carries out
a nonlinear process performed by the radial basis functions. The number of radial basis
nodes in every input line is equivalent to the number of clusters that have occured. The
mean and variance clusters are estimated refering to the input membership. The second
layer carries out a linear process performed by a linear summation function. However,
a nonlinear function can be used if needed. The mathematical form of the WRBNN
estimation model can be seen in Eq. (33). The parameter estimation can be calculated
by the least squares method.

10 gy
Vi = D) aa®(X) (33)
j=1 k=1

The steps of the model building will be expressed chronologically as follows.
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Figure 1: Model Architectur of WRBNN

1. The main pattern of the process usually dominates the model structure. This is an
adequate reason for initiating the model by including Xi¢ as descibed in Eq. (34)
or Eq. (35). Equation (34) is used for the nonlinear structure and Eq. (35) for
the linear. The choice of linear or nonlinear structure depends on its contribution
as indicated by the R-squared value. This determination prevails for the other
predictor variables.

q10

Y, = Z a10,kP10,x(X10) + € (34)
k=1

Y, = a10Xi0+e (35)

The hierarchical cluster method (see Johnson and Wichern (1982)) can be used to
assist in deciding on the number of radial basis nodes in each input line. The mean
of the radial basis nodes can be calculated by the k—means precedure. Next, the
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variance of the radial basis nodes can be calculated. The parameter estimation can
be performed by the method of least squares. The significance test of the model
parameters relies on the assumption of the normality of the errors.

. The next step is investigating the appropriateness of Xg for being included in the

model. It is chosen for the reason that nearest to the previous variable in the
multiresolution structure (see Eq. (23)). The test is begun by calculating the
error of the previous model as described by

q10

6 = Y;— Y a10xP10k(X10) (36)
k=1

The regression model consists of € as calculated in Eq. ( 36) using as the dependent
variables, the radial basis values of X719 and Xg, is performed as follows

q10 q9
€ = Z a10,5P10,k(X10) + Z ag P9 (Xog) + € (37)
=1 =1

The LM test procedure is performed to measure the contribution of Xg to the
model. As mentioned in (Lee et al., 1993), nR? is asymtoticaly distributed as
x%(g9) where n is the sample size, R? is the determination coefficient, and qqg is
the number of degrees of freedom, which is equal to the number of variables to be
added. This means that Xg is appropriate for being included in the model when
nR? > ng,qg'

. If Xy is appropriate for being included in the model then the initial model described

in Eq. (34) is updated to Eq. (38). Oherwise, Xy is rejected from the model and
step 2 is repeated for Xg.

q10 q9

Y, = Z a10,5P10,k(X10) + Z ag Py 1(Xg) + € (38)
=1 =1

. The task expressed in steps 2 and 3 are repeated for the other variables described in

Eq. (32). The significance test of the model parameters in every step is performed
assuming the normality of the errors.

5 Result and Discussion

Data with nonlinear properties is needed to support the comprehensiveness of these ob-
servation. Fortunately, the R software (R Core Team, 2014) and its supporting packages
usually have relevant examples of such data. In Addition, the need for relevant data can
be met by generating simulation data. The data of the index of industrial production
in the United States (IIPUs) in the tsDyn package will be used as an example in this
paper (Hansen, 1999). tsDyn is a package of dynamical time series modeling included
in the class of nonlinear models (see Stigler 2010 and Di Narzo et al. 2009).
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Figure 2: Plot of IIPUs data (solid line) and its predction (dots line) in wavelet based model

o 100 200 300 400

Time

Figure 3: Plot of IIPUs data (solid line) and its predction (dots line) in WRBNN model

Table (1) shows that the variable X2 does not make a significant contribution to the
model in the linear sense. A careful investigation was performed to revise the model.
The statistical summary of the WRBNN model can be seen Table (2). The results show
that all variables make a significant contribution to the WRBNN model. Furthermore,
the R squared of the new model is greater, which indicates that the new model is better.

6 Conclusion

The choice of initial mean cluster in the k-means procedure plays a role in the goodness
of the final model. Computer packages may make aprovisional choice as was done in
this paper. Some trials were performed and then the best result was choosen. However,
expertise may need to be sharpened in order to chose the best value. The type of radial
basis function also needs to be matched to the properties of the data. No one perfect
method for all types of data exists. Although the IIPUs data can be approximated well
by the WRBNN model, but it still needs to be compared to other models. Finally, an
advanced WRBNN model is still open for development and testing.
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Table 2: Staistics for the WRBNN model

RBF Variable Coefficient Std. Error t value Prob.
- X0 -0.05846 0.01718 -3.403 0.000728
- Xy 0.99749 0.01822 54.741  0.000000
- X3 -0.11615 0.03310 -3.510 0.000497
- X7 1.14460 0.05616 20.380 0.000000
- Xs -0.42897 0.07531 -5.696 0.000000
- X5 1.01633 0.07865 12.922  0.000000
- X4 -0.33759 0.11109 -3.039 0.002521
- X3 1.11906 0.10358 10.804  0.000000
Mq*) X 0.14237 0.05062 2.813 0.005140
- X4 1.14656 0.11027 10.397  0.000000

Residual standard error: 1.01 on 426 degrees of freedom
Multiple R-squared: 0.9693, Adjusted R-squared: 0.9686
F-statistic: 1346 on 10 and 426 DF, p-value: < 2.2e-16

*) Multiquadrics radial basis function
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