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In a recent note, Huang and Oluyede (2014) proposed a new model called
the exponentiated Kumaraswamy Dagum (EKD) distribution with applica-
tions to income and lifetime data. In this note, this distribution is shown
to be a very competitive model for describing censored observations in life-
time reliability problems. This work shows that in certain cases, the EKD
distribution performs better than other parametric model such as the ex-
ponentiated Kumaraswamy Weibull distribution and its sub-models, which
include some of the commonly used models in survival analysis and relia-
bility analysis, such as the exponentiated Weibull, Weibull and exponential
distributions.
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1 Introduction

We consider a life-testing experiment where n units is kept under observation until
failure. It is possible that these units could be some system, components, or computer
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chips in reliability experiments or the units could be patients that are placed under
certain drug or clinical conditions. suppose we have to terminate the experiment before
all the units have failed, as in the case where individuals in a clinical trial may drop out
of the study or the study may be ended or terminated due to economic conditions or lack
of funds. In the case of an industrial experiment, units bay fail or break accidentally.
Data obtained from these settings or under these conditions are referred to as censored
data. In this note, we are primarily concerned with the application of a new model called
the exponentiated Kumaraswamy Dagum (EKD) distribution to censored data.

We start by looking at the generalized beta distribution of the second kind and the
sub-model called Dagum distribution. The generalized beta distribution of the second
kind (GB2), McDonald (1984), McDonald and Xu (1995) have application in several
areas including modeling of size distribution of personal income. The probability density
function (pdf) of the GB2 distribution is given by:

fGB2(y; a, b, p, q) =
ayap−1

bapB(p, q)[1 + (yb )a]p+q
, for y > 0.

Note that a > 0, p > 0, q > 0, are the shape parameters and b is the scale parameter and
B(p, q) = Γ (p)Γ (q)

Γ (p+q) is the beta function. When the parameter q = 1, the resulting distri-

bution is called Dagum distribution, Dagum (2008). Kleiber (2008) traced the genesis
of Dagum distribution and summarized several statistical properties of this distribution.
Domma and Condino (2013) obtained the maximum likelihood estimates of the param-
eters of Dagum distribution for censored data. Domma and Condino (2013) presented
the beta-Dagum distribution. Domma et al. (2011) presented results on the maximum
likelihood estimation in Dagum distribution with censored samples.

The main objective here is the application of the EKD model to real lifetime censored
data, primarily for describing data which include censored observations in life time re-
liability problems. In this paper, we present maximum likelihood estimation as well as
comparisons with other parametric models in the exponentiated Kumaraswamy Dagum
distribution under Type I right censoring and Type II double censoring schemes. This
paper is organized as follows. The model is given in section 2. Maximum likelihood
estimates of the model parameters under Type I right censoring and Type II double cen-
soring plans are presented in section 3. Applications, case studies and comparisons with
the exponentiated Kumaraswamy Weibull distribution are given in section 4, followed
by concluding remarks in section 5.

2 The Exponentiated Kumaraswamy-Dagum Distribution

In this section, the EKD distribution is presented for completeness (see Huang and
Oluyede (2014) for additional details). Kumaraswamy (1980) introduced a two-parameter
distribution on (0, 1). Its cdf is given by

G(x) = 1− (1− xψ)φ, x ∈ (0, 1),
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for ψ > 0 and φ > 0. For an arbitrary cdf F (x) with pdf f(x) = dF (x)
dx , the family of

Kumaraswamy-G distributions with cdf Gk(x) is given by

GK(x) = 1− (1− Fψ(x))φ,

for ψ > 0 and φ > 0. By letting F (x) = GD(x), we obtain the Kumaraswamy-Dagum
(KD) distribution, with cdf

GKD(x) = 1− (1−GψD(x))φ.

We replace the dependent parameter βψ by α, so that the cdf and pdf of the EKD
distribution are given by

GEKD(x;α, λ, δ, φ, θ) = {1− [1− (1 + λx−δ)−α]φ}θ, (1)

and

gEKD(x;α, λ, δ, φ, θ) = αλδφθx−δ−1(1 + λx−δ)−α−1[1− (1 + λx−δ)−α]φ−1

× {1− [1− (1 + λx−δ)−α]φ}θ−1, (2)

for α, λ, δ, φ, θ > 0, and x > 0, respectively. The quantile function of the EKD distribu-
tion is in closed form, and is given by

G−1
EKD

(q) = xq = λ
1
δ

{
[1− (1− q

1
θ )

1
φ ]−

1
α − 1

}− 1
δ

. (3)

3 Maximum Likelihood Estimation

Different censoring mechanisms lead to different likelihood functions. In the following
sections, we construct log-likelihood functions of the EKD distribution to deal with type
I right and type II doubly censored observations.

Although the maximum likelihood estimates are not available in closed form, they can
be evaluated with the help of numerical techniques. The difficulties in dealing with the
EKD distribution due to its complicated mathematical tractability are easily overcome
by using iterative methods which do not require high-computational efforts even in the
presence of censoring.

3.1 Type I Right Censoring

This is the most common form of incomplete data often encountered in survival analysis.
Type I right censoring arises when the study is conducted over a a specified time period
that can terminate before all the units have failed. Each individual has a fixed censoring
time Ci, which would be the time between the date of entry and the end of study, so that
the complete failure time of an individual will be known only if it is less than or equal
to the censoring time Ti ≤ Ci; otherwise, only a lower bound of the individual lifetime is
available Ti > Ci. The data for this design are conveniently indicated by pairs of random
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variables (Ti, εi), i = 1, . . . , n. Consider a sample size n of independent positive random
variables T1, . . . , Tn such that Ti is associated with an indicator variable εi = 0 if Ti is
a censoring time. Let Θ = (α, λ, δ, φ, θ)T , then the likelihood function, L(Θ), of a type
I right censored sample (t1, ε1), ..., (tn, εn) from EKD distribution with pdf gEKD(·) and
survival function SEKD(·) can be written as

L(Θ) =
n∏
i=1

gEKD(ti)
εiSEKD(ti)

1−εi ,

where SEKD(ti) = 1−GEKD(ti). The log-likelihood function, l(Θ), based on data, from
Equation (1) and (2) is

l(Θ) =
n∑
i=1

εi

{
lnα+ lnλ+ ln δ + lnφ+ ln θ − (δ + 1) ln ti

− (α+ 1) ln(1 + λt−δi ) + (φ− 1) ln[1− (1 + λt−δi )−α]

+ (θ − 1) ln{1− [1− (1 + λt−δi )−α]φ}
}

+

n∑
i=1

(1− εi) ln

{
1− {1− [1− (1 + λt−δi )−α]φ}θ

}
. (4)

The MLEs Θ̂ = (α̂, λ̂, δ̂, φ̂, θ̂) are obtained from the numerical maximization of Equation
(4). Let Θ = (α, λ, δ, φ, θ)T be the parameter vector and Θ̂ = (α̂, λ̂, δ̂, φ̂, θ̂) be the maxi-
mum likelihood estimate of Θ = (α, β, θ, λ, δ). Under the usual regularity conditions and
that the parameters are in the interior of the parameter space, but not on the boundary,

(Ferguson, 1996) we have:
√
n(Θ̂−Θ)

d−→ N5(0, I
−1(Θ)), where I(Θ) is the expected

Fisher information matrix. The asymptotic behavior is still valid if I(Θ) is replaced
by the observed information matrix evaluated at Θ̂, that is J(Θ̂). The multivariate
normal distribution N5(0, J(Θ̂)−1), where the mean vector 0 = (0, 0, 0, 0, 0)T , can be
used to construct confidence intervals and confidence regions for the individual model
parameters and for the survival and hazard rate functions.

3.2 Type II Double Censoring

Type II double censoring is used to indicate that, in an ordered sample of size n, a
known number of observations is missing at both ends, while in type I censoring, the
number of censored observations is a random variable and the time of study is fixed.
The data consist of the remaining ordered observations tr+1, . . . , tm when the r smallest
observations and the n − m largest observations are out of a sample of size n from
the EKD distribution. The likelihood function, L(Θ), of the type II doubly censored
sample t(r+1), ..., t(m) from EKD distribution with pdf gEKD(·), cdf GEKD(·) and survival
function SEKD(·) is given by

L(Θ) =
n!

r!(n−m)!
{GEKD(t(r+1))}r{SEKD(t(m))}n−m

m∏
i=r+1

gEKD(t(i)).
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The log-likelihood function, l(Θ), for a type II doubly censored sample t(r+1), ..., t(m)

from EKD distribution is given by

l(Θ) = ln

(
n!

r!(n−m)!

)
+ rθ ln{1− [1− (1 + λt−δ(r+1))

−α]φ}

+ (n−m) ln

(
1− {1− [1− (1 + λt−δ(m))

−α]φ}θ
)

+

m∑
i=r+1

(
lnα+ lnλ+ ln δ + lnφ+ ln θ − (δ + 1) ln t(i)

−(α+ 1) ln(1 + λt−δ(i) ) + (φ− 1) ln[1− (1 + λt−δ(i) )−α]

+(θ − 1) ln{1− [1− (1 + λt−δ(i) )−α]φ}
)
. (5)

As in the type I right censoring scheme, the MLEs Θ̂ = (α̂, λ̂, δ̂, φ̂, θ̂) are only obtained
by numerical methods.

4 Application

In this section, we give some applications to real life data. Maximum likelihood estimates
of the model parameters under type I right and type II double censored data are obtained
and comparisons with the exponentiated Kumaraswamy Weibull distribution and its sub-
models, which are widely used in reliability and survival data analysis are presented.
We compared EKD and its sub-models, as well as exponentiated Kumaraswamy Weibull
(EKW) distribution, with the aid of the statistics: -2 Log-likelihood statistic, Akaike
Information Criterion, AIC = 2p − 2 ln(L), Bayesian Information Criterion, BIC =

p ln(n)−2 ln(L), and Consistent Akaike Information Criterion, AICC = AIC+2 p(p+1)
n−p−1 ,

where L = L(Θ̂) is the value of the likelihood function evaluated at the parameter
estimates, n is the number of observations, and p is the number of estimated parameters
in the model. The exponentiated Kumaraswamy Weibull (EKW) pdf given by

fEKW (x) = θabcλcxc−1e−(λx)c
[
1− e−(λx)c

]a−1{
1−

[
1− e−(λx)c

]a}b−1

×
[
1−

{
1−

[
1− e−(λx)c

]a}b]θ−1

,

for θ ≥ 0, λ, a, b, c > 0, was also compared to the EKD distribution via the statistics
states above. Probability plots (Chambers (1983)) are also presented. For the probability

plot, we plotted GEKD(x(j); α̂, λ̂, δ̂, φ̂, θ̂) against
j − 0.375

n+ 0.25
, j = 1, 2, · · · , n, where x(j)

are the ordered values of the observed data. We also computed a measure of closeness
of each plot to the diagonal line. This measure of closeness of the plot to the diagonal
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Table 1: Estimation of models for remission times data

Estimates Statistics

Distribution α λ δ φ θ -2 Log Likelihood AIC AICC BIC SS

EKD 4.0674 52.0264 1.7826 1.425 0.1792 836.7 846.7 847.2 861.3 0.0410

(0.6287) (32.0067) (0.2623) (0.6799) (0.02053)

KD 0.1862 0.5639 7.8559 0.0577 1 944.6 952.6 952.9 964.3 2.8410

(0.05143) (0.2804) (0.1391) (0.005263) -

D 2.5445 2.5344 1.1709 1 1 857.1 863.1 863.2 871.8 0.1870

(0.8068) (1.3466) (0.1174) - -

a b c λ θ

EKW 1.1633 0.05785 2.4018 0.05674 0.1918 927.2 937.2 937.7 951.8 4.7914

(0.2468) (0.01698) (0.1602) (0.005661) (0.04479)

line given by the sum of squares

SS =
n∑
j=1

[
G(x

(j)
)−

(
j − 0.375

n+ 0.25

)]2
,

where the data censor=0 have been deleted in type I right censored data.

4.1 Case I: Remission times of cancer patients

For the first example, we consider the data set on remission times (in months) for 137
cancer patients, Lee and Wang (2003). Estimates of the parameters for type I right
censoring models, AIC, AICC, BIC, and SS are given in Table 1. In the plot comparing
the survival functions of the EKD, KD, D and EKW distributions with the Kaplan-Meier
curve, we see that the EKD distribution is preferred, while the other models tend to over
or underestimate, mostly overestimate the empirical curve.

Plots of the fitted densities and the histogram, hazard functions, survival functions,
and observed probability vs predicted probability for the remission times data are given
in Figures 1, 2, 3 and 4, respectively.

The LR test statistic of the hypothesis H0 : EKD against Ha : KD and H0 : EKD
against Ha : D are 107.9 (p-value < 0.0001) and 20.4 (p-value < 0.0001). Also, EKD
distribution gives the smallest SS value. We can conclude that EKD distribution provides
a very good fit for remission times data.

4.2 Case II: 2004 New Car and Truck Data

The second example consists of price of 428 new vehicles for the 2004 year (Kiplinger’s
Personal Finance, Dec 2003). After sorting the data, we note the 4 largest numbers are
far away from others. So we drop the last 4 number. As a result, 424 numbers are study,
where n = 428, r = 0,m = 424. Estimates of the parameters, −2 log(L), AIC, AICC,
BIC, and SS are given in Table 2.
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Table 2: Estimation of models for price of car (×104)

Estimates Statistics

Distribution α λ δ φ θ -2 Log Likelihood AIC AICC BIC SS

EKD 0.006567 0.3440 13.7987 0.1609 16.6667 1489.9 1499.9 1500.0 1520.1 0.2816

(0.000265) (0.03825) (0.1624) (0.00789) (2.5266)

KD 9.4739 0.0027 13.5703 0.0537 1 1979.1 1987.1 1987.2 2003.3 14.8571

(1.2372) (0.000734) (0.1214) (0.00266) -

D 2.453 6.3435 2.9237 1 1 1472.4 1478.4 1478.4 1490.5 0.0478

(0.7916) (3.6931) (0.2089) - -

a b c λ θ

EKW 6.0407 0.0273 4.1272 0.2520 0.0705 1582.5 1592.5 1592.7 1612.8 3.5570

(0.1765) (0.00367) (0.07324) (0.003682) (0.003311)

Plots of the fitted density and the histogram, and observed probability versus predicted
probability are given in Figures 5 and 6. The sub-model, Dagum distribution seem to
be the “superior” fit for this data, based on the plots and the statistics given in Table 2.

The LR test statistic of the hypothesis H0 : EKD against Ha : KD is 489.2 (p-value
< 0.0001). Dagum gives the smallest AIC, AICC, BIC and SS values.

5 Concluding Remarks

We have proposed and presented results on a new class of distributions called the Expo-
nentiated Kumaraswamy Dagum (EKD) distribution. We employed this family of EKD
distributions to fit censored data. We showed that this class of distributions is competi-
tive class of models as far as censored observations in lifetime and reliability analysis are
concerned. Estimation of the parameters of the models under Type I right and Type II
double censoring plans and applications are also given.
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Figure 1: Fitted Densities for Remission Data
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Figure 2: Fitted Hazard Rate Functions for Remission Data
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Figure 3: Fitted Survival Functions for Remission Data
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Figure 4: Probability Plots for Remission Data
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Figure 5: Fitted Densities for Price of Car Data
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Figure 6: Probability Plots for Price of Car Data
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