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We consider the estimation problem of the Lindley distribution based on
progressive type-II censored data. We use the EM algorithm for estimating
the involved parameter using the maximum likelihood method. The asymp-
totic variance of the MLE within the EM framework is obtained. Then, the
asymptotic confidence intervals of the parameter are constructed. Finally, a
real data set and a simulation study are presented to illustrate the obtained
results.
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1 Introduction

In the literature of survival analysis and reliability theory, the exponential distribution is
widely used as a model of lifetime data. However, the exponential distribution only pro-
vide a reasonable fit for modeling phenomenon with constant failure rates. Distributions
like gamma, Weibull and lognormal have become suitable alternatives to the exponential
distribution in many practical situations. Ghitany et al. (2008) found that the Lindley
distribution can be a better model than one based on the exponential distribution. The
Lindley distribution belongs to an exponential family and it can be written as a mixture
of an exponential with parameter β and a gamma distribution with parameters (2, β).
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A continuous random variable X is said to have Lindley distribution with a parameter
β, we write X ∼ Lin(β), if its probability density function (pdf) is given by

f(x) =
β2

1 + β
(1 + x) e−βx, x > 0, β > 0. (1)

The pdf given in (1) is a special mixture of Exponential(β) and Gamma(2, β) distribu-
tions as

f(x) = pf1(x) + (1− p)f2(x) x > 0,

where p = β/(1 + β), f1(x) = β e−βx and f2(x) = β2xe−βx. The corresponding cumula-
tive distribution function (cdf) is given by

F (x) = 1− 1 + β + βx

1 + β
e−βx, x > 0, β > 0. (2)

Ghitany et al. (2008) gave a comprehensive study on the properties of the Lindley distri-
bution. Recently, different generalizations and extensions of the Lindley distribution
have appeared in the literature. Ghitany et al. (2011) considered a two-parameter
weighted Lindley distribution. Zakerzadeh and Mahmoudi (2012) proposed a two-
parameter lifetime distribution by compounding Lindley and geometric distributions.
Shanker et al. (2013) introduced a two-parameter Lindley distribution of which the one-
parameter Lindley distribution is a particular case.

There are several situations in reliability experiments and survival analysis in which
some items are terminated from the experiments. Many types of censoring schemes
are used in lifetime analysis. Conventional type-I, type-II censoring and the hybrid
censoring do not allow for removal of items from the experiment. The type-II progressive
censoring scheme, which has this advantage, becomes very popular for the last few
years. The progressive type-II censoring scheme can be described as follows: at the
time of the first failure, X1:m:n, R1 surviving items are removed randomly from the n1
remaining surviving items, at the time of the second failure, X2:m:n, R2 surviving items
are removed at random from the n − R1 − 2 remaining items, and so on. At the time
of the mth observed failure, the remaining Rm = n −m − R1 − · · · − Rm−1 surviving
items are removed from the test. For more details see Balakrishnan and Aggarwala
(2000). The parameter estimation for different lifetime distributions have been studied
based on progressive type-II censored samples see e.g. Sarhan and Abuammoh (2008).
Very recently, Al-Zahrani and Gindwan (2014) considered the problem of parameter
estimation of a two-parameter Lindley distribution under hybrid censoring.

The rest of this paper is structured as follows. Section 2 gives the maximum likelihood
estimator based on progressively type-II censored sample. Section 3 describes how to
obtain the MLE of the unknown parameter of the Lindley distribution using the EM
algorithm. Also, the MCMC method is used to generate samples from the Lindley
distribution and hence a simulation study is carried out to assess the obtained results.
An examples is considered for illustrative purposes. Finally, we conclude in Section 4.
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2 Estimation

In this section the maximum likelihood estimator is obtained based on progressively
type-II censored Lindley distribution. Suppose n independent items are put on a life
test with the corresponding lifetimes X1, X2, · · · , Xn being identically distributed. We
assume that Xi, i = 1, 2, · · · , n are independent identical distributed with pdf (1).

2.1 Maximum likelihood estimation

We consider estimation by the method of maximum likelihood. The likelihood for a
random sample X1, · · · , Xn from (1) under type-II progressively censored data is given
by

L(X|β) = C

m∏
i=1

f(xi)[1− F (xi)]
Ri

= C

m∏
i=1

β2

β + 1
(1 + xi) e

−βxi
[
β + 1 + βxi

β + 1
e−βxi

]Ri

,

where C = n(n−R1 − 1)(n−R1 −R2 − 2) · · · (n−R1 − · · · −Rm−1 −m+ 1). The log
likelihood function without the constant term can be written as

logL = 2m log (β)−m log (β + 1) +

m∑
i=1

log (1 + xi)

+

m∑
i=1

Ri log

(
β + 1 + βxi

β + 1

)
− β

m∑
i=1

xi(1 +Ri). (3)

Differentiating (3) with respect to β yields the likelihood equation for β

∂ logL

∂β
=

2m

β
− m

β + 1
−

m∑
i=1

xi(1 +Ri) +
m∑
i=1

Ri xi
(β + 1 + βxi)(β + 1)

= 0.

Usual algebraic solution for the equation (4) is not working due to the properties of
transcendental equation. Therefore, a numerical iteration can be used to solve the above
equation. The Newton-type method of maximization can be carried out.

2.2 EM Algorithm

The Expectation-Maximization (EM) algorithm is an applicable technique for parameter
estimation by maximum likelihood particularly in incomplete-data problems. The EM
algorithm, originally proposed by Dempster et al. (1977). For examples and a good
historical account of the EM algorithm see e.g. McLachlan and Krishnan (2007).

Suppose that X is a random vector with a joint density f(x; θ) and a p-dimensional
parameter θ ∈ Θ. If X were observed, then the maximum likelihood estimators of θ based
on the distribution of X can be obtained by maximizing the log-likelihood function of X.
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However, if only some of the complete-data vector X is observed. We will denote this by
expressing X as (Y;Z), where Y denotes the observed and Z denotes the unobserved or
missing data. For simplicity, we assume that the missing data are missing at random,
so that

f(y, z; θ) = f1(y; θ) f2(z|y; θ),

where f1 is the joint density of Y and f2 is the joint density of Z given the observed
data Y , respectively. Thus, the observed data log-likelihood.

lc(θ; y) = l(θ;x)− log f2(z|y; θ),

where l(θ;x) is the log-likelihood function of X. EM algorithm has become useful tool
when maximizing lc is difficult but maximizing the complete-data log-likelihood l is sim-
ple. However, since X is not observed, l cannot be evaluated and hence maximized.
The EM algorithm attempts to maximize l(θ;x) iteratively, by replacing it by its condi-
tional expectation given the observed data y. This expectation is computed with respect
to the distribution of the complete-data evaluated at the current estimate of θ. More
specifically, if θ(0) is an initial value for θ, then on the first iteration it is required to
compute

Q(θ, θ(0)) = Eθ(0) [l(θ;x)|y].

Q(θ, θ(0)) is now maximized with respect to θ, that is, θ(1) is found such that

Q(θ(1), θ(0)) ≥ Q(θ, θ(0)).

Thus the EM algorithm consists of an E-step (Estimation step) followed by an M-step
(Maximization step) defined as follows:

E-step: Compute Q(θ; θ(t)) where Q(θ; θ(t)) = Eθ(t) [l(θ;x)|y].

M-step: Find θ(t+1) such that Q(θ(t+1); θ(t)) ≥ Q(θ; θ(t)) for all θ.

Let us denote the observed and the censored data by Y = (Y1, Y2 · · · , Ym) and Z =
(Z1, · · · , Zn−m) respectively. The censored data vector Z can be thought of as missing
data. The combination of Y and Z, say W = (Y,Z), forms the complete data set. If
we denote the log-likelihood function of the complete data set by lc(W ;β), ignoring the
additive constant, then we have

lc(W ;β) = 2n log (β)− n log (β + 1) +

m∑
i=1

log (1 + yi)− β
m∑
i=1

yi(1 +Ri)

+
m∑
i=1

Ri log

(
β + 1 + βyi

β + 1

)
+
n−m∑
i=1

log (1 + zi)

−β
n−m∑
i=1

zi(1 +Ri) +

n−m∑
i=1

Ri log

(
β + 1 + βzi

β + 1

)
. (4)



104 Bander Al-Zahrani, Maha Gindwan

For the E-step of the EM algorithm, we need to compute the log-likelihood function, say
ls(W ;β) where ls(β) = E(lc(W ;β | Y = y). Therefore,

ls(W ;β) = 2n log (β)− n log (β + 1) +
m∑
i=1

log (1 + yi)

−β
m∑
i=1

yi(1 +Ri) +
m∑
i=1

Ri log

(
β + 1 + βyi

β + 1

)
+(n−m) [A(ym;β) +B(ym;β)− βC(ym;β)] , (5)

where
A(ym;β) = E[ln(1 + Zi)|Zi > ym]

B(ym;β) = E[Ri ln(β+1+βZi

β+1 )|Zi > ym]

C(ym;β) = E[Zi(1 +Ri)|Zi > ym]

 (6)

To find these terms we first give the following theorem: Given a random variable X
distributed according to Lindley distribution, X ∼ Lin(β), the conditional distribution
of Zi for i = 1, 2, · · · , n−m is

fZ|Y (Zi|Y(1) = y(1), · · · , Y(i) = y(i)) =
β2(1 + zi) e

−βzi

(β + 1 + βym)e−βym
, zi > ym. (7)

Here, Zi and Zj for i 6= j are conditionally independent. The proof can be obtained
similarly as in Ng et al. (2002). Based on (6) and (7), we can write

A(ym;β) =
β2

D

∫ ∞
ym

ln(1 + z) (1 + z) e−βzdz,

B(ym;β) =
β2

D

∫ ∞
ym

R ln

(
β + 1 + βz

β + 1

)
(1 + z) e−βzdz,

C(ym;β) =
β2

D

∫ ∞
ym

z (1 +R)(1 + z) e−βzdz,

whereD = (β+1+βym)e−βym . Following Geddes et al. (1990), we have:
∫∞
u ts−1 ln(t) e−tdt =

[(d/da)Γ(a, u)]a=s. After some transformation we get

A(ym;β) =
eβ

D

{
− ln(β) Γ (2, β(1 + ym)) +

[
d

da
Γ (a, β(1 + ym))

]
a=2

}
,

B(ym;β) =
R

D

{
eβ+1

(
d

da
Γ

[
a, (β + 1 + βym)

]
a=2

−
∫ ∞
β+1+βym

ln(u)e−udu

)
− ln(β + 1)

[
β e−βym + Γ(2, βym)

]}
,

C(ym;β) =
(1 +R)

D

{
Γ(2, βym) +

1

β
Γ(3, βym)

}
.
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Now the M-step involves the maximization of (5) with respect to β. If at the k-th
stage the estimate of β is β̂k, then β̂k+1 can be obtained by maximizing

g(β) = 2n ln(β)− n ln (β + 1) +
m∑
i=1

log(1 + yi)

+
m∑
i=1

Ri log

(
β + 1 + βyi

β + 1

)
− β

m∑
i=1

yi(1 +Ri)

+(n−m)
[
A(ym; β̂k) +B(ym; β̂k)− βC(ym; β̂k)

]
. (8)

The first-order derivative of (8) with respect to β is

∂g

∂β
=

2n

β
− n

β + 1
+

m∑
i=1

Ri(1 + yi)

β + 1 + βyi
−

m∑
i=1

Ri
β + 1

−
m∑
i=1

yi(1 +Ri)− (n−m) C(ym; β̂k) = 0.

First find β̂k+1 by solving a fixed point type equation as h(β) = β. The function h(β) is
defined as follows:

h(β) =
n(β + 2)

β + 1

[
−

m∑
i=1

Ri(1 + yi)

β + 1 + βyi
+

m∑
i=1

Ri
β + 1

+
m∑
i=1

yi(1 +Ri) + (n−m) C(ym; β̂(k))

]−1
.

The E-step and the M-step are then repeated till convergence is achieved to the desired
level of accuracy.

2.3 Asymptotic variance

Now, we compute the variance of the MLE of the involved parameter under progressive
type-II censoring assuming the EM algorithm is used. We refer to Louis (1982) who
developed a procedure for extracting the observed information matrix in incomplete
data problem. The idea is as follows.

IY (β) = IW (β)− IZ|Y (β),

where IY (β) is the observed information, IW (β) is the complete information and IZ|Y (β)
is the missing information. Complete information and the missing information are given
respectively as:

IW (β) = −E
[
∂2lc(W,β)

∂β2

]
. (9)

IZ|Y (β) = −(n−m)E

[
∂2 ln fZ(Z|Y, β)

∂β2

]
. (10)
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For a Lindley distribution the information about β based on the complete data is given
by

IW (β) =
2n

β2
− n

(β + 1)2
+

m∑
i=1

RiE

[
(1 + yi)

2

(β + 1 + βyi)2

]
−

m∑
i=1

Ri
(β + 1)2

+

n−m∑
i=1

RiE

[
(1 + zi)

2

(β + 1 + βzi)2

]
−
n−m∑
i=1

Ri
(β + 1)2

.

Using (7), the logarithm of the conditional distribution is

ln fZ|Y (z) = 2 ln(β) + ln(1 + z)− βz − ln(β + 1 + βym) + βym. (11)

The second order derivative of (11) with respect to β is

∂2 ln fZ
∂β2

=

(
1 + ym

β + 1 + βym

)2

− 2

β2
.

Now we can present IZ|Y using (10).

I(Z|Y )(β) = (n−m)

{
2

β2
−
(

1 + ym
β + 1 + βym

)2
}
. (12)

The asymptotic variance of β̂ can be obtained by inverting IY (β). The asymptotic
confidence interval can be readily obtained by using the asymptotic variance of the
MLE through the observed information.

3 Simulations and Data Analysis

3.1 Simulation Study

A Markov chain Monte Carlo (MCMC) algorithm is followed to get samples from Lindley
distribution. Instead of drawing direct samples from Lindley distribution, we may use
the Metropolis-Hastings algorithm. This method is an extension of the usual rejection-
acceptance sampling method. For a comprehensive treatment on MCMC methods,
Metropolis-Hastings algorithm, one may refer to the book by Robert and Casella (2013).
The algorithm is proposed as follows:

Step 1. Specify the values of n and β.

Step 2. Select starting point x(t) satisfying that f(x(t)) > 0.

Step 3. Generate Yt from a proposal distribution q(y|x(t)), where q is symmetric.

Step 4. TakeX(t+1) = Yt with probability ρ(x(t), Yt) or otherwise takeX(t+1) = x(t)

with probability 1− ρ(x(t), Yt), where f is the target density, and

ρ(x, y) = min

{
f(y) q(x|y)

f(x) q(y|x)
, 1

}
.
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Step 5. Compute the MLE using nlm() function of R package.

Step 6. Compute the MLE using the EM algorithm given in subsection 2.2.

Now we discuss the results of a simulation study based on 5000 simulations to evaluate
the MLE. The simulations were performed by using the R software. The sample sizes
used in the simulation study are 10(10)100 and the values of β are 1.0 and 1.5 for
different censoring schemes. The simulated values of MLE, mean squared error (MSE)
and asymptotic confidence intervals for β using Newton-type method and EM algorithm
are presented in tables 1 and 2. It can be observed that in most cases the estimators
obtained by the EM method converge to the true values of β better than that obtained
by the Newton-type method. For the complete case, it can be noted that both methods
converge to a very close estimate. A 95% confidence intervals for the parameter are
constructed based on asymptotic variance. It is observed that the confidence intervals
obtianed by Newton-type are wider than those obtained by EM algorithm. In general,
we can not say that EM algorithm is always better than Newton-type method. This
depends on the expectation of the log-likelihood function. A combination of the two
methods, say Newton-EM, would give better results.

3.2 Data Analysis

For illustrative purpose, we use a data set corresponding to waiting times (in minutes)
before service of 100 bank customers as discussed by Ghitany et al. (2008). The data
are given as follows: 0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5,
3.6, 4.0, 4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7,
6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0, 8.2, 8.6, 8.6, 8.6, 8.8,
8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4,
12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4,
18.9, 19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 23.0, 27.0, 31.6, 33.1, 38.5.

For analyzing this data set with progressively type-II censoring, we formulate different
censoring schemes for different values of m as shown in Table 3. Empirically, it can be
observed from Table 3 that the MLEs obtained by the EM algorithm have the smallest
standard errors (SE) as compared with that obtained by using Newton-type method.
For fixed m, one can determine the censoring scheme that is most efficient from others.

4 Conclusion

In this study some results on statistical inference were developed using EM algorithm.
Under the progressively type-II censoring scheme, we obtain the MLE for the unknown
parameter for the Lindley distribution. The MCMC methods are used to generate sam-
ple from Lindley distribution. The asymptotic variance of the MLE within the EM
framework has been obtained. Consequently, the asymptotic confidence intervals of the
parameter have been constructed. Comparisons are made between Newton-type method
and EM algorithm via a simulation study. It has been observed in this study that
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Newton-type Method EM Method

n m R MLE MSE (LCI,UCI) MLE MSE (LCI,UCI)

10 5 (1,0,0,1,3) 0.8897 5.9346 (0.3105, 1.4690) 0.5897 0.2879 (0.2011, 1.0082)

5 (0,0,0,5,0) 0.8937 2.6107 (0.3144, 1.4729) 0.5952 0.2845 (0.2031, 1.0072)

7 (0,2,0*3,1,0) 0.9207 1.7175 (0.4073, 1.4342) 0.6515 0.2477 (0.2938, 1.0091)

7 (0*3,3,0*3 ) 0.9352 3.9959 (0.4117, 1.4586) 0.6506 0.2494 (0.2933, 1.0079)

20 5 (5,0,5,0,5) 1.4921 52.322 (0.4509, 2.5334) 0.7276 0.2253 (0.1907, 1.2645)

10 (2,3,0*7,5) 1.1329 0.9683 (0.6090, 1.6568) 0.7163 0.1936 (0.3807, 1.0519)

15 (3,0*13,2) 1.0423 0.3755 (0.6457, 1.4390) 0.7605 0.1690 (0.4739, 1.0471)

17 (3,0*16) 1.0794 0.3759 (0.6852, 1.4736) 0.8443 0.1595 (0.5435, 1.1450)

30 10 (4,6,0*7,10) 1.2873 4.4132 (0.6881, 1.8865) 0.7599 0.1554 (0.3867, 1.1332)

15 (5,0*6,5,0*6,5) 1.2296 0.7538 (0.7640, 1.6952) 0.7630 0.1490 (0.4710, 1.0550)

20 (5,0*10,5,0*8) 1.2872 0.6960 (0.8538, 1.7206) 0.8142 0.1366 (0.5476, 1.0807)

25 (1,2,0*22,3) 1.0236 0.2183 (0.7233, 1.3238) 0.8063 0.1369 (0.5704, 1.0422)

40 15 (53,0*11,10) 1.3995 1.4857 (0.8654, 1.9336) 0.8011 0.1201 (0.4853, 1.1169)

25 (5,0,0,5,0*20,5) 1.2747 0.4843 (0.8964, 1.6530) 0.8135 0.1148 (0.5751, 1.0520)

35 (2,0*10,1,0*22,2) 1.0794 0.1966 (0.8088, 1.3500) 0.8761 0.1104 (0.6585, 1.0937)

50 25 (10,0,0,5,0*20,10) 1.3482 0.5441 (0.9513, 1.7451) 0.8162 0.0985 (0.5743, 1.0582)

35 (3,0,7,0*29,1,1,3) 1.2600 0.3632 (0.9431, 1.5770) 0.8432 0.0990 (0.6346, 1.0518)

45 (3,2,0*43) 1.1645 0.2281 (0.9025, 1.4264) 0.9605 0.1030 (0.7488, 1.1722)

60 30 (5,10,0*26,7,8) 1.2898 0.3922 (0.9470, 1.6325) 0.8099 0.0913 (0.5908, 1.0290)

40 (2,3,0*10,10,0*26,5) 1.3000 0.3612 (0.9947, 1.6053) 0.8491 0.0881 (0.6525, 1.0457)

50 (0*48,5,5) 1.0027 0.1143 (0.7982, 1.2073) 0.7952 0.1026 (0.6312, 1.0012)

70 35 (3,7,0*15,5,0*15,10*2) 1.2125 0.2718 (0.9184, 1.5066) 0.7975 0.0898 (0.5978, 1.0573)

45 (5,0*39,5,0,0,5,10) 1.0987 0.1623 (0.8645, 1.3329) 0.7764 0.1008 (0.6073, 1.0255)

60 (0*57,2,4,4) 1.0041 0.1000 (0.8165, 1.1916) 0.8102 0.0924 (0.6575, 1.0029)

80 45 (10,0*41,5,10,10) 1.1622 0.1897 (0.9145, 1.4098) 0.7904 0.0889 (0.6172, 1.0036)

65 (0*30,5,10,0*33) 1.1943 0.2002 (0.9739, 1.4147) 0.8888 0.0755 (0.7272, 1.0504)

75 (0*74,5) 1.0122 0.0882 (0.8407, 1.1837) 0.8929 0.0747 (0.7412, 1.0447)

90 40 (56,0*32,10,10) 1.4346 0.4668 (0.9517, 1.7675) 0.8495 0.0626 (0.6485, 1.0506)

60 (5,5,10,10,0*56) 1.6329 0.7324 (0.9968, 1.9589) 0.9365 0.0554 (0.7590, 1.1139)

80 (0*78,5,5) 1.0158 0.0850 (0.8507, 1.1809) 0.8428 0.0774 (0.7049, 1.0007)

100 50 (10,7,0*46,8,25) 1.2053 0.1865 (0.9621, 1.4485) 0.8054 0.0728 (0.6367, 1.0041)

70 (10,7,0*66,8,5) 1.2625 0.2215 (0.9399, 1.4852) 0.8555 0.0664 (0.7060, 1.0050)

90 (1,3,0*50,1,5,036) 1.1452 0.1358 (0.9648, 1.3256) 0.9462 0.0664 (0.7992, 1.0932)

100 (0*100) 1.0210 0.0764 (0.8689, 1.1732) 1.0210 0.0764 (0.8689, 1.1731)

Table 1: Average estimators, MSE and average asymptotic confidence intervals for β = 1
at different values of n and m under Newton-type method and EM algorithm.
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Newton Method EM Method

n m R MLE MSE (LCI,UCI) MLE MSE (LCI,UCI)

10 5 (1,0,0,1,3) 1.0878 11.676 (0.3559, 1.8196) 0.6507 0.8643 (0.2190, 1.5823)

5 (0,0,0,5,0) 1.1650 20.318 (0.3660, 1.9640) 0.6474 0.8714 (0.2182, 1.5766)

7 (0,2,0*3,1,0) 1.0284 1.1927 (0.4513, 1.6056) 0.7169 0.7621 (0.3211, 1.6127)

7 (0*3,3,0*3 ) 1.0482 1.4197 (0.4579, 1.6385) 0.7208 0.7638 (0.3224, 1.6193)

20 5 (5,0,5,0,5) 1.9666 45.074 (0.5546, 3.3786) 0.8202 0.6313 (0.2035, 1.9369)

10 (2,3,0*7,5) 1.5087 4.6177 (0.7814, 2.2361) 0.8308 0.5833 (0.4370, 1.7246)

15 (3,0*13,2) 1.3444 1.2181 (0.8179, 1.8710) 0.9049 0.5195 (0.5597, 1.7502)

17 (3,0*16) 1.3732 0.7817 (0.8606, 1.8859) 1.0141 0.4394 (0.6480, 1.8801)

30 10 (4,6,0*7,10) 1.9550 18.672 (0.9862, 2.9239) 0.8924 0.4785 (0.4455, 1.8394)

15 (5,0*6,5,0*6,5) 1.7509 3.2343 (1.0565, 2.4453) 0.9229 0.4442 (0.5640, 1.7817)

20 (5,0*10,5,0*8) 1.7528 1.3601 (1.1435, 2.3621) 0.9970 0.3859 (0.6656, 1.8284)

25 (1,2,0*22,3) 1.3191 0.4393 (0.9231, 1.7151) 0.9927 0.4032 (0.6981, 1.7873)

40 15 (53,0*11,10) 2.0933 18.183 (1.2476, 2.9389) 0.9501 0.3881 (0.5681, 1.8321)

25 (5,0,0,5,0*20,5) 1.7877 1.0003 (1.2373, 2.3381) 1.0137 0.3396 (0.7114, 1.8159)

35 (2,0*10,1,0*22,2) 1.4354 0.3537 (1.0666, 1.8043) 1.1121 0.2926 (0.8312, 1.8931)

50 25 (10,0,0,5,0*20,10) 1.9763 1.5826 (1.3663, 2.5863) 1.0084 0.3165 (0.7035, 1.8132)

35 (3,0,7,0*29,1,1,3) 1.7838 0.7268 (1.3190, 2.2485) 1.0764 0.2762 (0.8053, 1.8475)

45 (3,2,0*43) 1.5841 0.3916 (1.2183, 1.9499) 1.2394 0.2210 (0.9610, 1.9878)

60 30 (5,10,0*26,7,8) 1.8754 1.0685 (1.3529, 2.3978) 1.0049 0.3080 (0.7276, 1.7822)

40 (2,3,0*10,10,0*26,5) 1.8563 0.7436 (1.4034, 2.3092) 1.0804 0.2600 (0.8255, 1.8354)

50 (0*48,5,5) 1.3699 0.2385 (1.0821, 1.6577) 1.0444 0.3028 (0.8249, 1.7639)

70 35 (3,7,0*15,5,0*15,10*2) 1.7636 0.6300 (1.3153, 2.2120) 1.0026 0.3005 (0.7463, 1.7589)

45 (5,0*39,5,0,0,5,10) 1.5649 0.3261 (1.2176, 1.9122) 1.0103 0.3047 (0.7859, 1.7346)

60 (0*57,2,4,4) 1.3949 0.1976 (1.1264, 1.6634) 1.0861 0.2592 (0.8773, 1.7950)

80 45 (10,0*41,5,10,10) 1.6734 0.3930 (1.3006, 2.0462) 1.0122 0.2893 (0.7859, 1.7386)

65 (0*30,5,10,0*33) 1.7271 0.3852 (1.3968, 2.0575) 1.1880 0.1874 (0.9674, 1.9086)

75 (0*74,5) 1.3883 0.1654 (1.1469, 1.6298) 1.1983 0.1897 (0.9904, 1.9063)

90 40 (56,0*32,10,10) 2.1402 1.2169 (1.2176, 2.6628) 1.0418 0.2507 (0.7896, 1.7939)

60 (5,5,10,10,0*56) 2.4685 1.7130 (1.4558, 2.9811) 1.2100 0.1455 (0.9756, 1.9444)

80 (0*78,5,5) 1.4099 0.1610 (1.1740, 1.6458) 1.1354 0.2144 (0.9457, 1.8251)

100 50 (10,7,0*46,8,25) 1.7615 0.4107 (1.3885, 2.1345) 1.0181 0.2698 (0.8001, 1.8360)

70 (10,7,0*66,8,5) 1.8487 0.4244 (1.4095, 2.1879) 1.1326 0.1903 (0.9304, 1.8348)

90 (1,3,0*50,1,5,0*36) 1.6427 0.2362 (1.3756, 1.9097) 1.2909 0.1391 (1.0856, 1.9962)

100 (0*100) 1.4158 0.1348 (1.1994, 1.6322) 1.4158 0.1348 (1.1994, 1.9992)

Table 2: Average estimators, MSE and average asymptotic confidence intervals for β =
1.5 at different values of n and m under Newton method and EM algorithm.
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Newton-type Method EM Method

m R MLE SE (LCI,UCI) MLE SE (LCI,UCI)

50 (10,0*47,20,20) 0.2574 0.0236 (0.2112, 0.3036) 0.1862 0.0187 (0.1495, 0.2229)

70 (5,0*65,2,3,10,10) 0.2399 0.0193 (0.2020, 0.2777) 0.1717 0.0135 (0.1453, 0.1981)

90 (0*89,10) 0.2084 0.0153 (0.1785, 0.2383) 0.1665 0.0124 (0.1422, 0.1908)

100 (0*100) 0.1866 0.0133 (0.1605, 0.2126) 0.1866 0.0133 (0.1606, 0.2126)

Table 3: MLE corresponding SE and 95% asymptotic confidence interval for β at differ-
ent values of m (observed data) under Newton-type method and EM algorithm.

the numerical MLEs obtained by the EM method converge to the true values of the
unknown parameter better than those obtained by the Newton-type method. Also, it
has been observed that the coverage probabilities for both methods are better when we
had a larger number of observed data. Finally, a practical example has been analyzed
for illustrative purpose. We have observed that the EM-algorithm and the Newtontype
method produced very satisfactory results, but EM method provided better estimates.
Therefore, we can conclude that EM algorithm seems a good procedure in estimation
problem.
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