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Cryptographie et de Traitement de l’Information, Kénitra, Maroc
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Given q+p variables (q endogenous variables and p exogenous variables)
and the correlation matrix among exogenous variables, how to compute the
correlation matrix implied by a given recursive path model connecting these
q+p variables ? A new method called Finite iterative method is introduced
to perform this task. The computational efficiency of this method and the
well-known Jöreskog’s method is discussed and illustrated.
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Introduction

Path Analysis (Boudon, 1965; Duncan, 1966; Heise, 1969; Hauser et al, 1975) is a set of
statistical techniques to examine cause and effect between observed (measured) variables
on the same set of individuals. Path Analysis is an extension of multiple regression
models in the sense that variables can be both dependent and independent. This is not
the case for multiple regression where only one single dependent variable is explained by
several independent variables.

The origin of path analysis dates back to the beginning of the last century in the work of
Sewall Wright (1921), a British geneticist who was the first to develop this multivariate
statistical technique. Today, path analysis is the simplest form of structural equation
models with latent variables. Path analysis is applied in many disciplines as evidenced
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by the abundant literature on this subject (Boudon, 1965; Duncan, 1966). Numerous
articles deal with the use of path analysis in ecological studies (Sanchez-Pinero, F. and
G.A. Polis. 2000; Shine, R. 1996; Shipley, B. 1999) and in social sciences (Blalock, 1971;
Wolfle LM, 2003) .

In the vocabulary of path analysis there are two types of variables : (i) exogenous
variables and (ii) endogenous variables. An exogenous variable is always an independent
variable; its role is to explain other variables, which implies that it can never be an effect
in the considered model, whereas an endogenous variable is a one that can be the cause
(predictor) for one or more other variables and at the same time the effect of one or
more other variables.

The starting point of path analysis is a conceptual diagram, considered as a schematic
representation of the model; this diagram should be specified by the modeler. In addition
to the causal relationships between variables, the disturbances associated to endogenous
variables as well as direct effects (parameters) between variables must also be specified.
When two variables are correlated and there is no causal relationship between them,
this is represented by a curved arc. This diagram is represented algebraically by a set
of regression equations in which at least one variable is both explanatory and explained.
Figure 1 shows a path analysis model with four variables ξ1, η1, η2 and η3, together with
its system of structural equations.

Figure 1: Representation of a path analysis model with four variables and its system of
structural equations. ξ1 is an exogenous variable (predictor), η1, η2 and η3 are
endogenous variables (explained), η1 is explained by ξ1 with direct effect noted
by a, η2 is explained by ξ1 and η1 with direct effects noted respectively by b
and c, η3 is explained by η1 and η2 with direct effects noted respectively by
d and e. Disturbances are associated to endogenous variables η1, η2 and η3.
These disturbances are noted respectively by ζ1, ζ2 and ζ3.

When a variable ξ is the cause of the variable η, much of the variance of η could be
explained by ξ. The disturbance ζ associated to η represents the source of variability
of η which is not explained by ξ. The disturbance is then an exogenous variable not
directly measured. The magnitude of an effect is measured by a numerical quantity
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called the path coefficient or parameter. It is a statistical estimate of the direct effect of
an independent variable on the dependent variable taking into account other variables.

In path analysis, there are two basic kinds of models, the recursive model and the
nonrecursive model. In a recursive model, the causal effects are unidirectional. In other
words, no variable is both a cause and an effect of another variable, directly or indirectly.
In contrast, in a nonrecursive model there is a mutual causal influence among variables.

The present paper focuses on the computation of the correlation matrix implied by a
recursive path model noted R̂. The computation of this matrix is needed at least at three
different levels of the process of the analysis: (i) to test the validity of the model, (ii) to
evaluate the total effect of exogenous variables, (iii) to estimate the parameters where

several criteria are minimized, like F =1
2tr
[(

R−R̂
)]2

with R, the emprirical correlation.

The topic of the present paper can be summarized as follows. Given q+p variables
(q endogenous variables and p exogenous variables) and the correlation matrix among
exogenous variables, how to compute the correlation matrix implied by a given recursive
path model connecting these q+p variables?

The phrase ”given path model” means that the parameters of the model are known. The
task for the model given in figure 1 is to provide the following correlation matrix.

R̂ =


1

a

b+ac

a

1

ab+c

ad+be+ace d+abe+ce

b+ac

ab+c

1

ad+be+ace

d+abe+ce

abd+cd+e

abd+cd+e 1


The well-known method proposed by Jöreskog (1977)(see section 2 in the present paper)
can be considered as a solution for the computation of the correlation matrix implied
by a given recursive model. The drawback of this method is twofold : it requires matrix
inversion. On the other hand, and mainly, the variances of disturbances should be
computed based on model parameters. It is important to note that the expression of
these variances in terms of parameters is known only for simple models. This fact
constitutes the main limitation of Jöreskog’s method.

In order to tackle this limitation, the present paper proposes a new method called the
Finite Iterative Method (FIM) to compute the correlation matrix implied by a recursive
path model. Unlike Jöreskog’s method, the computation of the variances of disturbances
using FIM is not necessary. In addition, FIM is more straightforward and can be easily
implemented since matrix inversion is not needed anymore.

The paper is organized as follows. The first part presents the notations used in the rest
of the paper. The second section describes Jöreskog’s method as well as FIM. The third
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section illustrates in examples the efficiency of FIM compared to Jöreskog’s method.
Finally, some conclusions will be drawn in the last section.

1 Notations

This section introduces the basic notations following Jöreskog (1977), Jöreskog and Wold
(1982) and Hoyle (1995). The translation of the diagram of a recursive path model to
equations is given by the following generic form :


η1

η2
...

ηq

 =


0 . . .

β21
. . .

. . . 0

. . .
...

...
. . .

βq1 . . .

. . .
...

βq,(q−1) 0




η1

η2
...

ηq

+


γ11 γ12

γ21 γ22

. . . γ1p

. . . γ2p
...

. . .

γq1 γq2

. . .
...

· · · γqp




ξ1

ξ2
...

ξp

+


ζ1

ζ2
...

ζq

 (1)

System (1) can be also written in compact form as :

η= Bη+Γξ+ζ (2)

where in (2) :

(i) η= (η1, η2, . . ., ηq) is the (q×1) vector of all endogenous variables,

(ii) ξ= (ξ1, ξ2, . . ., ξp) is the (p×1) vector of all exogenous variables,

(iii) B is the (q×q) lower triangular matrix of structural coefficients relating endogenous
variables. B is always lower triangular for a recursive model.

(iv) Γ is the (q×p) matrix of structural coefficients relating endogenous variables to
exogenous variables,

(v) ζ= (ζ1, ζ2, . . ., ζq) is the (q×1) vector of disturbances.

In addition, the following hypothesises are considered :

(i) the exogenous variables are standardised,

(ii) the vector of disturbances ζ is not correlated to the vector of exogenous variables
ξ : {

E
(
ξζt
)

= 0

E
(
ζξt
)

= 0
(3)

where E is the mathematical expectation.

(iii) disturbances are not correlated, that means E
(
ζζt) is q diagonal matrix.
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2 Correlation matrix implied by a recursive path model
and its computation.

The correlation matrix implied by the model described by system (1) is the ((p+q)×(p+q))
symetric matrix R̂ whose elements are the correlations between each pair of variables in
the model. This matrix can be defined as :

R̂ =

[
E
(
ξξt
)

E
(
ξηt
)

E
(
ηξt
)

E
(
ηηt
) ] (4)

2.1 Jöreskog’s method

The expression given by Jöreskog to compute the correlation matrix implied by the
model is as follows :

R̂=R̂JOR=

 Φ ΦΓt
[
(I−B)−1

]t
(I−B)−1ΓΦ (I−B)−1

(
ΓΦΓt+Ψ

) [
(I−B)−1

]t
 (5)

where Φ = E
(
ξξt
)

= [cor (ξj, ξi)]1≤j,i≤p is the (p×p) correlation matrix among exogenous

variables and Ψ =E
(
ζζt
)

= [cov (ζj, ζi)]1≤j,i≤q is the (q×q) covariance matrix among
disturbances.

The matrix (5) is derived from (2) that is equivalent to the following equation :

(I−B) η=Γξ+ζ (6)

or equivalently

η=(I−B)−1 (Γξ+ζ) (7)

The equivalence between (2) and (6) is obvious. Equivalence between (6) and (7) comes
from the fact that the lower triangular matrix (I−B) is not singular because its diagonal
elements are nonzero (all are equal to 1).

In fact,

E
(
ηξt
)

= E
(

(I−B)−1 (Γξ+ζ) ξt
)

= E
(

(I−B)−1Γξξt+(I−B)−1ζξt
)

thus
E
(
ηξt
)

=(I−B)−1ΓE
(
ξξt
)

+(I−B)−1E
(
ζξt
)

however, from (3),
E
(
ζξt
)

= 0

thus
E
(
ηξt
)

=(I−B)−1ΓΦ (8)
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and by transposition and since Φ is symetric :

E
(
ξηt
)

=
[
E
(
ηξt
)]t

=[(I−B)−1ΓΦ]t=ΦΓt
[
(I−B)−1

]t
(9)

otherwise,

E
(
ηηt
)

= E

([
(I−B)−1 (Γξ+ζ)

] [
(I−B)−1 (Γξ+ζ)

]t)
= E

[
(I−B)−1 (Γξ+ζ) (Γξ+ζ)t

[
(I−B)−1

]t]
it follows :

E
(
ηηt
)

=(I−B)−1
[
ΓE
(
ξξt
)

Γt+ΓE
(
ξζt
)

+E
(
ζξt
)

Γt+E
(
ζζt
)] [

(I−B)−1
]t

since E
(
ξξt
)

= Φ, E
(
ξζt
)

= 0, E
(
ζξt
)

= 0 and E
(
ζζt
)

= Ψ it follows,

E
(
ηηt
)

=(I−B)−1
(
ΓΦΓt+Ψ

) [
(I−B)−1

]t
(10)

substituting (8), (9) and (10) in (4) gives (5).

2.2 The Finite Iterative Method

This part presents FIM, a new method to compute the matrix R̂ with a different vision.
Indeed, its principle shown in Figure 2 is to build R̂ iteratively. Starting with the first
square block of order p (corresponding to the p exogenous variables (ξ1, ξ2, . . ., ξp)),

then the (p + 1)th row and the (p + 1)th column (corresponding to the first endogenous
variable η1) and ending with the (p + q)th row and (p + q)th column (corresponding to
the last endogenous variable ηq).

Figure 2: Construction of the implied correlation matrix using the Finite Iterative
Method

This building process is possible by using system (1) directly without recourse to (7).
This system can be written as follows :
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

η1=γ11ξ1+. . .+γ1pξp+ζ1

η2=γ21ξ1+. . .+γ2pξp+β21η1+ζ2
...

ηj=γj1ξ1+. . .+γj,pξp+βj1η1+. . .+βj,(j−1)ηj−1+ζj
...

ηq=γq1ξ1+. . .+γq,pξp+βq1η1+. . .+βq,(q−1)ηq−1+ζq

Thereafter, we denote by A the (q×(p + q)) matrix of model parameters defined as :

A =
[

Γ B
]

=


γ11 . . . γ1p 0 . . . . . . 0

γ21 . . . γ2p β21
. . .

. . .
...

. . . . . . . . . . . .
. . .

. . .
...

γq1 . . . γq,p βq1 . . . βq,(q−1) 0


For fixed k between 1 and q, and m between 1 and (p + q), the following notations are
used :

A1:k,1:m=[ai,j]1≤i≤k,1≤j≤m

The Finite iterative method is defined by the following q (finite) iterations (Algorithm
1):

Repeat for j=1, 2,. . ., q :

1. R̂FIM
p+j,1:p+j−1=Aj,1:p+j−1 R̂FIM

1:p+j−1,1:p+j−1

2. R̂FIM
1:p+j−1,p+j=

(
R̂FIM

p+j,1:p+j−1

)t
3. R̂FIM

p+j,p+j= 1

Algorithm 1. Finite Iterative Method

These iterations are initializated by R̂FIM
1:p,1:p=Φ

Theorem. The matrix R̂ can be computed by the algorithm above : R̂=R̂FIM

Proof of theorem



Electronic Journal of Applied Statistical Analysis 91

Variables ξ1, . . .and ξp are all exogenous, therefore the block R̂FIM
1:p,1:p corresponding to

these variables is naturally identical to Φ, the correlation matrix among exogenous vari-
ables. That means,

R̂FIM
1:p,1:p=Φ

1. The following notations are made :

(i) r̂ξiξi′= cor (ξi, ξi′) = E (ξi′ξi) ∀(i, i′) ∈ {1, p}
(ii) r̂ηjξi= cor (ηj, ξi) = E (ηjξi) ∀j∈ {1, q} and ∀i ∈ {1,p}
(iii) r̂ηjηj′= cor

(
ηj, ηj′

)
= E

(
ηj′ηj

)
∀(j, j′) ∈ {1, q}

Since the first equation contains in the right term only the exogenous variables, we
separate it from the other equations. This first equation is,

η1=γ11ξ1+. . .+γ1pξp+ζ1

thus, for i ∈ {1, p} the multiplication of this equation on the right side by ξi gives,

η1ξi =γ11 ξ1ξi+. . .+γ1,p ξpξi+ ζ1ξi

however, models assumptions in (3) imply that ζ1 is uncorrelated with all exogenous
variables ξ1, . . .and ξp. This implies,

E(ζ1ξi) = 0 ∀i∈ {1, p}

so, taking the respective mathematical expectation we obtain,

r̂η1ξi=γ1,1r̂ξ1ξi+. . .+γ1,pr̂ξpξi

or equivalently,

r̂η1ξi=A1,1:p R̂FIM
1:p,i

thus, for i in the set of integers between 1 and p we obtain,

R̂FIM
p+1,1:p =

[̂
rη1ξ1 , . . ., r̂η1ξp

]
=
[
A1,1:p R̂FIM

1:p,1, . . ., A1,1:p R̂FIM
1:p,p

]
=A1,1:p R̂FIM

1:p,1:p

Now we consider equations for the other endogenous variables η2, . . .and ηq.

Let j ∈ {2, q}, the structural equation for the jth endogenous variable ηj is :

ηj=γj1ξ1+. . .+γj,pξp+βj1η1+. . .+βj,(j−1)ηj−1+ζj
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let i ∈ {1,p} and k ∈ {1, j−1}, if we multiply this equation on the right side successively
by ξi and ηk we obtain,

ηjξi =γj1 ξ1ξi+. . .+γj,p ξpξi+βj1 η1ξi+. . .+βj,(j−1) ηj−1ξi+ ζ jξi

and

ηjηk=γj1 ξ1ηk+. . .+γj,p ξpηk+βj1 η1ηk+. . .+βj,(j−1) ηj−1ηk+ ζ jηk

From (3) ζj is uncorrelated with all exogenous variables ξ1, . . .and ξp. Moreover, since
ηj is explained by η1, . . .and ηj−1, ζj is uncorrelated with all the endogenous variables
η1, . . .and ηj−1. Thus, {

E (ζjξi) = 0 ∀i∈ {1,p}
E (ζjηk) = 0 ∀k∈ {1, j− 1}

so, taking the respective mathematical expectation, we obtain,

r̂ηjξi=γj,1r̂ξ1ξi+. . .+γj,pr̂ξpξi+βj,1r̂η1ξi+. . .+βj,j−1r̂ηj−1ξi

and

r̂ηjηk=γj,1r̂ξ1ηk+. . .+γj,pr̂ξpηk+βj,1r̂η1ηk+. . .+βj,j−1r̂ηj−1ηk

or equivalently,

r̂ηjξi=Aj,1:p+j−1 R̂FIM
1:p+j−1,i

and

r̂ηjηk=Aj,1:p+j−1 R̂FIM
1:p+j−1,p+k

thus for i in the set of integers between 1 and p, and k in the set of integers between 1
and j-1 :

R̂FIM
p+j,1:p =

[̂
rηjξ1 , . . ., r̂ηjξp

]
=
[
Aj,1:p+j−1 R̂FIM

1:p+j−1,1, . . ., Aj,1:p+j−1 R̂FIM
1:p+j−1,p

]
and

R̂FIM
p+j,p+1:p+j−1 =

[̂
rηjη1 , . . ., r̂ηjηj−1

]
=
[
Aj,1:p+j−1 R̂FIM

1:p+j−1,p+1, . . ., Aj,1:p+j−1 R̂FIM
1:p+j−1,p+j−1

]
thus

R̂FIM
p+j,1:p=Aj,1:p+j−1 R̂FIM

1:p+j−1,1:p (11)

and
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R̂FIM
p+j,p+1:p+j−1=Aj,1:p+j−1 R̂FIM

1:p+j−1,p+1:p+j−1 (12)

(11) and (12) give

R̂FIM
p+j,1:p+j−1=Aj,1:p+j−1 R̂FIM

1:p+j−1,1:p+j−1

2. Since R̂FIM is a correlation matrix then it is symmetric. This then implies,

R̂FIM
1:p+j−1,p+j=

(
R̂FIM

p+j,1:p+j−1

)t
3. Since R̂FIM is also a correlation matrix then by definition :

R̂FIM
p+j,p+j= 1

3 Efficiency of FIM and its complementarity with
Jöreskog’s method.

The aim of this section is to analyse the efficiency of FIM compared with Jöreskog’s
method, and discuss their complementarity. To do this, the model described in Figure
1 is considered. The three structural equations in this model can be written as system
(1) with,

B =

 0 0 0

c 0 0

d e 0

 ,Γ=

 a

b

0

 ,Φ = [1].

3.1 How to calculate R̂ by the two methods ?

For Jöreskog’s method we start with

(I−B)−1=

 1 0 0

c 1 0

d+ce e 1


thus from (8)

E
(
ηξt
)

=

 1 0 0

c 1 0

d+ce e 1


 a

b

0

×1=

 a

ac+b

ad+ace+be


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and from (9)

E
(
ξηt
)

=(E
(
ηξt
)
)t=

[
a ac+b ad+ace+be

]
However the matrix Ψ is diagonal with elements :

θ21= Var (ζ1)

θ22= Var (ζ2)

θ23= Var (ζ3)

then

Ψ =

 θ21 0 0

0 θ22 0

0 0 θ23


thus from (10) :

E
(
ηηt
)

=

 1 0 0

c 1 0

d+ce e 1



 a

b

0

×1
[

a b 0
]

+

 θ21 0 0

0 θ22 0

0 0 θ23



 1 c d+ce

0 1 e

0 0 1


thus,

E
(
ηηt
)

=

 1 0 0

c 1 0

d+ce e 1


 a2+θ

2
1 ab 0

ab b2+θ
2
2 0

0 0 θ23


 1 c d+ce

0 1 e

0 0 1


and therefore, the correlation matrix implied by the model described by system (1) and
provided by Jöreskog’s method is written as :

R̂ = R̂JOR =
1

a

b + ac

a

a2 + θ21
a (ac + b) + cθ21

ad + be + ace a [a (d + ce)+be] + (d + ce) θ21

b + ac

a (ac + b)+cθ21
(ac + b)2 + c2θ

2
1 + θ22

ad + be + ace

a [a (d + ce)+be]+ (d + ce) θ21
(ac + b) [a (d + ce)+be]+c (d + ce) θ21 + cθ22

(ac + b) [a (d + ce)+be]+c (d + ce) θ21 + cθ22 [a (d + ce)+be]2 + (d + ce)2θ21 + eθ22 + θ23


(13)

For the Finite iterative method we consider

A =

 a 0 0 0

b c 0 0

0 d e 0


.

The correlation matrix implied by the model R̂FIM provided by FIM is built in three
iterations (q=3) and the algorithm 1 is initialisated by

R̂FIM
1:1,1:1 = Φ = [1]
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First iteration (q=1) : Computation for the first endogenous variable.

R̂FIM
2,1:1=A1,1:1 R̂FIM

1:1,1:1=a×1 =a

R̂FIM
1:1,2=

(
R̂FIM

2,1:1

)t
=a

R̂FIM
2,2 = 1, thus

R̂FIM
1:2,1:2 =

[
1

a

a

1

]

Second iteration (q=2) : Computation for the second endogenous variable.

R̂FIM
3,1:2=A2,1:2 R̂FIM

1:2,1:2=
[

b c
] [ 1 a

a 1

]
=
[

b+ac ab+c
]

R̂FIM
1:2,3=

(
R̂FIM

3,1:2

)t
=

[
b+ac

ab+c

]
R̂FIM

3,3 = 1 , thus

R̂FIM
1:3,1:3 =

 1

a

b+ac

a

1

ab+c

b+ac

ab+c

1


Third iteration (q=3) : Computation for the third endogenous variable.

R̂FIM
4,1:3=A3,1:3 R̂FIM

1:3,1:3=
[

0 d e
] 1 a b+ac

a 1 ab+c

b+ac ab+c 1


=
[

ad+be+ace d+abe+ce abd+cd+e
]

R̂FIM
1:3,4=

(
R̂FIM

4,1:3

)t
=

 ad+be+ace

d+abe+ce

abd+cd+e


R̂FIM

4,4 = 1 thus,
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R̂FIM = R̂FIM
1:4,1:4 =


1

a

b+ac

a

1

ab+c

ad+be+ace d+abe+ce

b+ac

ab+c

1

ad+be+ace

d+abe+ce

abd+cd+e

abd+cd+e 1

=R̂ (14)

3.2 Which method is more flexible?

The answer to this question is summarized in Figure 3. This figure lists the matrices
needed to compute the implied correlation matrix for a given recursive model.

Figure 3: Comparison between Jöreskog’s method and ”FIM”.

As clearly shown in (5), Jöreskog’s method requires prior knowledge of the inverse matrix
(I−B)−1, and provides R̂ as function of the variances of disturbances (see (13)). FIM,
instead requires neither the inverse matrix (I−B)−1 nor the matrix Ψ providing directly
the matrix R̂ (calculations depends on Φ, Γ and B only, which are given). As a conse-
quence, FIM seems more flexible than Jöreskog’s method in computing the correlation
matrix implied by the model.

3.3 Is FIM more efficient than Jöreskog’s method ?

The answer to this question depends on the matrix of variances of disturbance Ψ. When
this matrix can be exhibited from Φ, Γ and B, the efficiency of both methods is identical.
Unfortunately, no known method allows computation of the matrix Ψ from Φ, Γ and
B. This leads to the conclusion that FIM is more efficient than Jöreskog’s method. In
practice, however, Jöreskog’s method does not provide exactly the matrix R̂, it provides
an approximation of it, noted by R̂App because an approximation of Ψ is used.

To illustrate this situation, 100 data sets were randomly generated. Four variables
are considered for each data set. The model in Figure 1 is considered for each data
set, the matrix Φ is taken as the empirical correlation matrix between exogenous vari-
ables, and the matrices Γ and B are estimated as solutions of the minimization criterion
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1
2tr
[(

R−R̂
)]2

with R the empirical correlation. The lavaan package (Rosseel, 2012) is

used to estimate the model for each simulation. Thereby, for each data set, the matrix
R̂App provided by Jöreskog’s method is given as ouput by the lavaan package, and the
matrix R̂FIM is computed by algorithm 1. Then we measure the distance between these
two matrices defined as :

∆ = 1
2tr
[
R̂App − R̂FIM

]2
Figure 4 displays the quantity ∆ for each simulation. This figure shows that this differ-
ence is negligible since it does not exceed 0.004, which affirms that these two matrices
are very close. The most important result of these simulations is judging the quality of
this approximation.

Figure 4: Distance between the two implied matrices R̂App and R̂FIM for each of 100
simulations.

3.4 Are both methods complementary?

Simultaneous use of both methods has the advantage of determining exactly the matrix
of variances of disturbance Ψ as a function of parameters (Φ, Γ and B). This saves the
user from worrying about approximations. Indeed, the matrix Ψ can be calculated as
follows :

(i) Φ, Γ and B are given,
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(ii) compute R̂FIM,

(iii) compute Ψ as :

Ψ=(I−B)R̂FIM
p+1:p+q,p+1:p+q (I−B)t− ΓΦΓt (15)

Indeed, from
R̂JOR=R̂FIM

and by identifying the blocks corresponding to the endogenous variables,

(I−B)−1
(
ΓΦΓt+Ψ

) [
(I−B)−1

]t
=R̂FIM

p+1:p+q,p+1:p+q

And by applying (15) to the model of Figure 1, the matrix Ψ is as follows :

Ψ =

 1 0 0

−c 1 0

−d −e 1


 1 ab + c d + abe + ce

ab + c 1 abd + cd + e

d + abe + ce abd + cd + e 1


 1 −c −d

0 1 −e

0 0 1



−

 a

b

0

×1×
[

a b 0
]

thus,

Ψ =

 1− a2 0 0

0 1− b2 − c2 − 2abc 0

0 0 1− d2 − e2 − 2abde− 2cde


To conclude, FIM does not determine the variances of disturbances, and Jöreskog’s
method does not allow the computation of R̂. The simultaneous use of the two methods
allows calculation of R̂ and Ψ.

4 Conclusion and perspectives.

The computation of the correlation matrix implied by a recursive path model is a crucial
step in the global path analysis process. This paper proposes a new method called Fi-
nite Iterative Method (FIM) which will enrich and expand strategies for computing this
matrix. On a conceptual level, FIM has two advantages compared to the well-known
method of Jöreskog. First, it does not need matrix inversion and second, knowledge
of variances of disturbances is not necessary. On a practical level, if we get good ap-
proximations of variances of disturbances, this new method is equivalent to Jöreskog’s
method .
The question that still remains to be answered and always open is to propose similar
strategies of computation for nonrecursive models, and for models with latent variables.
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