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In this paper, we study the problem of estimating nonparametrically the
regression mode for fixed design model. We suppose the error random vari-
ables are independent. The joint asymptotic normality of the regression mode
estimator at different fixed design points is established under some regular-
ity conditions. The performance of the proposed estimator is tested via two
applications using a simulation and real life data.

keywords: Fixed design model, kernel estimation, regression mode, asymp-
totic normality.

1 Introduction

Parzen (1962) considered the problem of estimating the mode of a univariate pdf. Parzen
(1962) and Nadaraya (1965) have shown that under some regularity conditions the esti-
mator of the population mode obtained by maximizing a kernel estimator of the pdf is
strongly consistent and asymptotically normally distributed. Samanta (1973) has given
multivariate versions of Parzen’s results. For independent and identically distributed
data, Samanta and Thavanesmaran (1990) considered the problem of estimating the
mode of a conditional pdf, for random design model, and they have shown under reg-
ularity conditions that the estimator of the population conditional mode is strongly
consistent and asymptotically normally distributed. Salha and Ioanides (2004) gener-
alized their work for the multivariate case. Salha and Ioanides (2007) considered the
estimation of the conditional mode under dependence conditions.

We assume that (x1, Y1), (x2, Y2), . . . (xn, Yn) are i.i.d. random variables with con-
ditional pdf f(y|x) where the variable Y depending upon a fixed design predictor x
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through a regression function m(x). In this paper, we consider the regression model
Yi = m(xi) + εi. for i = 0, 1, 2, . . . , n and m(x) is an unknown regression function.
The design points x1, x2, . . . xn determined by the experimenter, are ordered, i.e. we
have 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1. In the absence of other information, we can take
xi = i

n , i = 1, 2, . . . , n. εi are independent random variables with mean 0 and variance σ2.

Most investigations are concerned with regression mean function m(x), where m(x) =∫
yf(y|x)dy. However, new insights about the underling structures can be gained by

considering other aspects of the conditional distribution function f(y|x) of Y at a given
value x ∈ [0, 1] such as the regression quantile and the regression mode. In this paper,
we consider the problem of estimating the mode of the unknown function f(y|x).

We consider fn(y|x) as an estimator of f(y|x), and it is given by

fn(y|x) = h−1n

n∑
i=1

uni(x)L(
y − Yi
hn

),

where, K and L are two kernel functions satisfying some condition and hn is a se-
quence of positive numbers converging to zero and satisfies some specific conditions.
uni(x) = h−1n

∫ si
si−1

K(x−uhn )du is the Gasser-Mueller function. s1, s2, . . . sn is a sequence
of interpolating points such that xi−1 ≤ si ≤ xi, for i = 1, 2, . . . , n. In general, we take

si =
xi−1 + xi

2
.

Consequentially, there is a random variableMn(x) which is called the sample regression
mode, such that

fn(Mn(x)|x) = max
−∞<y<∞

fn(y|x).

In this paper, for distinct points x1, x2, . . . , xk we will establish conditions under which
(nh4n)

1
4 (Mn(x1),Mn(x2), . . . ,Mn(xk))

T , where T denotes the transpose, is asymptoti-
cally multivariate normally distributed random variable.

This paper is organised as follow, in Section 2, we state the conditions under which the
results of this paper are established. In Section 3, we mention some preliminaries lemmas
and notations that will help us in the remaining of this paper. The main results of this
paper are stated and proved in Section 4. Finally, Section 5 contains two applications
to test the performance of the proposed estimator.

2 Conditions

We consider the fixed equally spaced design regression model

Yi = m(xi) + εi, i = 1, 2, . . . , n,

where

xi =
i

n
, i = 1, 2, . . . , n.
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We assume the following conditions are satisfied.

Condition 1

1. m(x) is an bounded function on [0, 1].

2. εi are independent random variables with mean 0 and variance σ2 .

Condition 2
The partial derivatives

f (j)(x, y) =
∂jf(y|x)

∂yj
, j = 1, 2

exist and are bounded.

Condition 3

1. The kernel function K(.) has support [−1, 1].

2.
∫ 1
−1K(u)du = 1 and

∫ 1
−1 uK(u)du = 0.

3. The kernel function L(.) is asymmetric pdf.

Condition 4
The bandwidth are chosen such that hn = cn−δ, c > 0, 0 < δ < 1 such that

lim
n−→∞

nh8n =∞, lim
n−→∞

nh10n = 0.

3 Preliminaries Lemmas

The proof of the following four lemmas can be obtained by a modification of the proof
of the lemmas in Samanta and Thavanesmaran (1990).

Lemma 1 (Bochner Lemma) Suppose K1(u) and K2(u) are real valued Borel mea-
surable functions satisfying the following conditions:

1. sup
u∈R
|Ki(u)| <∞, i = 1, 2.

2.
∫∞
−∞ |Ki(u)| du <∞, i = 1, 2.

3. lim
|u|→∞

u2 |Ki(u)| = 0, i = 1, 2.

If f(x, y) ∈ C(f), the set of continuity points of f , then for any η ≥ 0,

lim
n→∞

[
h−2
n

∫ ∞
−∞
|K1(

u

hn
)K2(

v

hn
)|1+ηf(y − v|x− u)dv du

]
= f(y|x)

∫∞
−∞

∫∞
−∞ |K1(u)K2(v)|1+ηdvdu.
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Define,

f (j)n (y|x) = h−(j+1)
n

n∑
i=1

uni(x)L(j)(
y − Yi
hn

), j = 1, 2,

Vni(y|x) = h−2n uni(x)L(1)(
y − Yi
hn

), i = 1, 2, . . . , n.

Lemma 2 Under the conditions (1) through (4), if f(x, y) ∈ C(f), we have

1. lim
n→∞

nh2n

[
V ar

(
f (1)n (y|x)

)]
= f(y|x)

∫ ∞
−∞

∫ 1

−1

(
K(u)L(1)(v)

)2
dudv.

2. (nh2n)
1
2

[
Ef

(1)
n (y|x)− f (1)(y|x)

]
= o(1).

Lemma 3 Under the conditions (1) through (4), we have

lim
n→∞

(n−1h2n)1+
δ
2

[
n∑
i=1

E|Vni − EVni|2+δ
]

= 0.

Lemma 4 Under the conditions (1) through (4), if g(x) > 0, then f
(2)
n (M∗n(x)|x) con-

verges in probability to f (2)(M(x)|x) as n tends to infinity, where |M∗n(x) −M(x)| <
|Mn(x)−M(x)|.

4 Main Results

The main results of this paper are stated and proved in this section.

Theorem 1 Suppose that x1, x2, . . . , xk are distinct points, where f(y|xi) > 0,
i = 1, 2, . . . , k, then under the conditions (1) through (4),

(nh2n)
1
2

(
f (1)n (y|x1), f (1)n (y|x2), . . . , f (1)n (y|xk)

)T
is asymptotically multivariate normal with mean vector zero and diagonal covariance
matrix Γ = [γij ], with

γii = f(y|xi)
∫ ∞
−∞

∫ 1

−1

(
K(u)L(1)(v)

)2
dudv.

Without loss of generality, we consider the special case k = 2. The method of the
proof remains valid for more general case. Firstly, we define for (i = 1, 2, . . . , n) and
(s = 1, 2) the following notations:

Wni(xs) = hn(Vni(y|xs)− EVni(y|xs)), Wn(xs) =
n∑
i=1

Wni(xs),

Zni = (Wni(x1),Wni(x2))
T , Zn = n−

1
2 (Wn(x1),Wn(x2))

T .
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Zn = (nh4)
1
2

(
f (1)n (y|x1)− Ef (1)n (y|x1), f (1)n (y|x2)− Ef (1)(y|x2)

)T
(1)

Let A = [ars] be a 2× 2 diagonal matrix with

ass = f(y|xs)
∫ ∞
−∞

∫ 1

−1

(
K(u)L(1)(v)

)2
du dv.

Let Z be a bivariate normally distributed random variable with mean zero vector and
covariance matrix A.

First we will show that Zn converges in distribution to Z. To do that, we will use
the multivariate version of Cramér - World theorem, see Pranab and Julio (1993). It
will be sufficient to prove that CZTn converges in distribution to CZT for any constant
C = (c1, c2) ∈ R2, C 6= 0.

Note that, CZTn =
n∑
i=1

n−
1
2 CZTni, E(n−

1
2 CZTni) = 0.

Let ρ2+δni = E|n−
1
2 CZni|2+δ, ρ2+δn =

n∑
i=1

ρ2+δni , and σ2n = V ar(CZTn ).

Using Liapounov’s condition, it will be sufficient to show that,

lim
n→∞

ρ2+δn

σ2n
= 0. (2)

Now, the proof of the theorem will be satisfied via the following two lemmas.

Lemma 5 Under the conditions (1) through (4), if f(x, y) ∈ C(f), then for
s = 1, 2, r = 1, 2, the following are true:

a. lim
n→

EW 2
ni(xs) = f(y|xs)

∫ ∞
−∞

∫ 1

−1

(
K(u)L(1)(v)

)2
du dv.

b. lim
n→∞

EWni(xs)EWni(xr) = 0, (r 6= s).

Proof:
a. From the definition of Wni(xs), we have

EW 2
ni(xs) = h2n

[
EV 2

ni(y|xs)− (EVni(y|xs))2
]
. (3)

h2nEV
2
ni(y|xs) = h2n

[
h−4n

∫ ∞
−∞

∫ 1

−1

(
K(

xs − u
hn

L(1)(
y − v
hn

)

)2

f(v|u) du dv

]

= h−2n

[∫ ∞
−∞

∫
−1

(
K(

u

hn
) L(1)(

v

hn
)

)2

f(y − v|xs − u) du dv

]
.
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Now, by an application of Lemma 1, we get that

lim
n→∞

h2nEV
2
ni(y|xs) = f(y|xs)

∫ ∞
−∞

∫ 1

−1

(
K(u) L(1)(v)

)2
du dv. (4)

h2n(EVni(y|xs))2 = h2n

[
h−2n

∫ ∞
−∞

∫ 1

−1
K(

u

hn
) L(1)(

v

hn
) f(y − v|xs − u) du dv

]
.

By another application of Lemma 1, we get that

lim
n→∞

h2n(EVni(y|xs))2 = 0. (5)

Now, a combination of (3), (4) and (5), (a) is satisfied.

b. From the definition of Wni(x), we have

EWni(x1)Wni(x2) = h2n (EVni(y|x1)Vni(y|x2)− EVni(y|x1)EVni(y|x2)) . (6)

Suppose that without loss of generality, x2 > x1, let δ = x2 − x1 and δn = δ
hn
.

h2nEVni(y|x1)Vni(y|x2) = h−2n

∫ ∞
−∞

∫ 1

−1
K(

x1 − u
hn

)K(
x2 − u
hn

)

(
L(1)(

y − v
hn

)

)2

f(v|u) du dv

=

∫ ∞
−∞

∫ 1

−1
K(u)K(δn + u)

(
L(1)(v)

)2
f(y − hnv|x1 − hnu) du dv

=

∫ ∞
−∞

(
L(1)(v)

)
f(y − hnv|x1 − hnu) dv

[∫ 1

−1
K(u)K(δn + u)

]
du.

(7)

Next, note that

∫ 1

−1
K(u)K(δn + u) du =

∫
|u|< δn

2

K(u)K(δn + u) du+

∫
|u|≥ δn

2

K(u)K(δn + u) du

≤ sup
|u|< δn

2

K(δn + u)

∫ 1

−1
K(z) dz + sup

|u|≥ δn
2

K(u)

∫ 1

−1
K(δn + z) dz

≤ 2 sup
|u|≥ δn

2

K(u).O(1) ≤ 4

δn
sup
|u|≥ δn

2

|uK(u)|.O(1)

=
4hn
δ

sup
|u|≥ δn

2

|uK(u)|.O(1) = O(hn). (8)

Finally, from (7) and (8), we have that
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lim
n→

h2n (EVni(y|x1)Vni(y|x2)) = 0. (9)

h2nEVni(y|x1)EVni(y|x2) = h2n

[
h−2n

∫ ∞
−∞

∫ 1

−1
K(

u

hn
)

(
L(1)(

v

hn
)

)
f(y − v|x1 − u) du dv

]
×

[
h−2n

∫ ∞
−∞

∫ 1

−1
K(

u

hn
)

(
L(1)(

v

hn
)

)
f(y − v|x1 − u) du dv

]
→ 0.

(10)

By an application of Lemma 1. Hence a combination of (6), (9), and (10), gives the
desired result.

Lemma 6 Under the conditions of Lemma 5, we have that lim
n→∞

σ2n = CACT .

Proof: σ2n = V ar(CZTn ) and by the definition of ZTn , we have

σ2n = V ar(n−
1
2 c1Wn(x1) + n−

1
2 c2Wn(x2))

= n−1c21V ar(Wn(x1)) + n−1c22V ar(Wn(x2)) + 2n−1c1c2Cov(Wn(x1),Wn(x2))

= n−1c21

n∑
i=1

V ar(Wni(x1)) + n−1c22
∑
i=1

V ar(Wni(x2))

+ 2n−1c1c2Cov

(
n∑
i=1

Wni(x1),
n∑
i=1

Wni(x2))

)

= c21V ar(Wni(x1)) + c22V ar(Wni(x2)) + 2n−1c1c2E

 n∑
i=1

n∑
j=1

Wni(x1)Wnj(x2)

 .

An application of Lemma 5 implies that,

lim
n→∞

∫ ∞
−∞

∫ 1

−1

(
K(u)L(1)(v)

)
du dv

[
c21f(y|x1) + [c22f(y|x2)

]
= CACT > 0.

Next, we have

ρ2+δni ≤ n−(1+
δ
2
)|C|2+δE|Zni|2+δ = n−(1+

δ
2
)|C|2+δE|(Wni(x1),Wni(x2))|2+δ

≤ n−(1+
δ
2
)|C|2+δ22+δ max{E|Wni(x1)|2+δ, E|Wni(x2)|2+δ}.
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Without loss of generality assume that E|Wni(x1)|2+δ ≥ E|Wni(x2)|2+δ.

ρ2+δni ≤ n−(1+
δ
2
)|C|2+δ22+δE|Wni(x1)|2+δ

= n−(1+
δ
2
)|C|2+δ22+δE|(h2n(Vni(x1)− EVni(x1))|2+δ

= 22+δ|C|2+δ(n−1)(1+
δ
2
)(h2n)2+δE|Vni(x1)− EVni(x1)|2+δ

= 22+δ|C|2+δ(n−1h4n)(1+
δ
2
)E|Vni(x1)− EVni(x1)|2+δ

Now, by an application of Lemma 3, we get that

ρ2+δn = n−(1+
δ
2
)
n∑
i=1

ρ2+δni

≤ 22+δ|C|2+δ(n−1h4n)(1+
δ
2
)
n∑
i=1

E|Vni(x1))− EVni(x1)|2+δ → 0.

Hence the Liapounov’s condition (2) is satisfied. Therefore, we have that, CZTn is
asymptotically normally distributed with mean zero and variance CACT and by the
multivariate version of Cramr - World theorem, we have that Zn converges in distribu-
tion to Z. Now an application of the second part of Lemma 2 in conjunction with the
last convergence gives the proof of the theorem.

Theorem 2 Supposet x1, x2, . . . , xk are distinct points, where f(y|xi) > 0, i = 1, 2, . . . , k,
then under the conditions (1) through (4), the random vector variable

(nh2n)
1
2 (Mn(x1)− (M(x1), . . . ,Mn(xk)− (M(xk))

T

is asymptotically multivariate normally distributed with mean vector zero and a diagonal
covariance matrix B = [bij ], with

bii =
f(M(xi)|xi)

(f (2)(M(xi)|xi))2

∫ ∞
−∞

∫ 1

−1

(
K(u)L(1)(v)

)2
dudv.

Proof: For a fixed x, taking the Taylor expansion of f
(1)
n (Mn(x)|x) aroundM(x), implies

0 = f (1)n (Mn(x)|x) ≈ f (1)n (M(x)|x) + (Mn(x)−M(x))f (2)n (M∗n(x)|x),

where

|M∗n(x)−M(x)| < |Mn(x)−M(x)|.

This implies that,

Mn(x)−M(x) ≈ − f
(1)
n (M(x)|x)

f
(2)
n (M∗n(x)|x)

,
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and therefore

(nh4n)
1
2 (Mn(x1)−M(x1), . . . ,Mn(xk)−M(xk))

T ≈

−(nh4n)
1
2

[
f
(1)
n (M(x1)|x1)

f
(2)
n (M∗n(x1)|x1)

, . . . ,
f
(1)
n (M(xk)|xk)

f
(2)
n (M∗n(xk)|xk)

]
,

where

|M∗n(xi)−M(xi)| < |Mn(xi)−M(xi)|, i = 1, 2, . . . , k.

An application of Theorem 1 and Lemma 4 completes the proof of the theorem.

5 Applications

In this section, we test the performance of the proposed estimator by considering two
applications. The first one deals with a simulation data, while the other one deals with
a real life data. The results of the two applications indicate that the proposed estimator
of the regression mode is reasonably good.

5.1 Simulation study

In this subsection, we consider an application using a simulation data. A sample of size
400 from the model y = sin2π(1−x2)+xe where x has standard normal distribution and
e has a uniform [0, 1] distribution. A perfect smooth would recapture the original single
y = sin2π(1 − x2) exactly. We used the following two kernel functions, the rectangle
kernel

K(x) =
1

2
, |x| < 1

and the Gaussian kernel

L(x) =
1√
2π
e−

x2

2 ,−∞ < x <∞.

For a direct comparison of the perfect smooth and the regression mode estimation, a
scatter plot of the original data, the perfect smooth and the estimated regression mode
curve are plotted in Figure 1. The performance of the estimator can be tested using R2

y,ŷ

(the correlation coefficients between y the predicated values and ŷ the actual values).

R2
y,ŷ = 1− SSE

SSTO
= 1−

∑
(yi − ŷi)2∑
(yi − ȳ)2

= 1− 28.4857

153.1601
= 0.8140,

where ȳ denotes the mean of actual values. Also the mean squared error,

MSE =
SSE

n
= 0.0712.
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Figure 1: Regression mode estimation

5.2 Real life data study

In this subsection, we consider an application using a real life data which is built in
S-Plus program. We consider the ethanol data which records 88 measurements from an
experiment in which ethanol was burned in a single cylinder auto-mobile test engine.
We used the first 71 observation from the variable E, which indicates the measure of
the richness of the air/ethanol mixture to estimate the last 17 observations. The mean
squared error is computed, MSE = 0.0436. Figure 2 shows the plot of the data and the
regression mode estimation.

Figure 2: Regression mode estimation of the ethanol data
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6 Conclusion

In this paper, the problem of estimating the regression mode for fixed design model has
been considered. The joint asymptotic normality of the regression mode estimator at
different fixed design points has been established under some regularity conditions. The
performance of the proposed estimator is tested via two applications using a simulation
and real life data. The results of the two applications indicate that the performance
of the estimator is reasonably good. The results of the applications can be slightly
improved if the rectangle kernel is replaced by the Epanchinkov kernel which is the
optimal kernel. We used the rectangle kernel for computational reasons. The new
estimator can be modified by considering a new bandwidth selection technique that uses
a variable bandwidth that depends on the points at which the mode function is estimated
rather than a constant bandwidth.

By considering some conditions, the results of this paper can be generalized to the
case of dependent data under some mixing conditions and for the case of time series
data.
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