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Multiple measurements with an unknown Gaussian likelihood function are

treated probabilistically. The likelihood function L(µ) ∝
(
(n− 1)s2x + n(µ− x)2

)−n/4
is derived where µ is the true value, x is the mean, and s2x is the variance
obtained from the n measurements.

1 Introduction

As motivation for this little calculation, imagine the following specific situation. You
are an Industrial Hygiene professional responsible for the health and safety of workers at
your plant. You have occupational exposure data (for example, exposure to lead aerosol)
consisting of three measurements of 0.2, 0.05, and 0.1, while the occupational exposure
limit is 1. So, you need to calculate the probability distribution of the true value of the
exposure, given the measurement results obtained. You are particularly interested in
the probability that the true value of the exposure exceeds l.

This application involves protecting the health of the worker, so a very conservative
approach is warranted.

Using the traditional (non Bayesian) approach with a lognormal model, one would
start by calculating the geometrical mean as 0.1 and the geometric standard deviation
as 2 by taking the exponentials of the average and standard deviations of the logs of
the measurement values. Then an upper confidence limit would be calculated as the
geometric mean times the geometric standard deviation raised to some power like 1.645
or 2. However one then considers the upper confidence limit of the geometric standard
deviation derived from just three data points, which leads to a much higher upper limit.
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The probabilistic (Bayesian) approach is the logical one, and it is conceptually simplest
and most straightforward. It produces at the end what is desired but never provided
with the traditional approach, namely a plot showing the probability distribution for
the quantity of interest. It is necessary to provide prior probability distributions for all
the parameters, but this is natural, because the logic demands it.

Elements of the analysis presented here are similar to material in Chapter 8 of the
book by Sivia (Sivia and Skilling, 2006), but the main result quoted in the abstract
seems not to have been stated before.

The likelihood function derived here, which assumes a logarithmic prior on the true
standard deviation, can serve as a most conservative limiting case for many data analysis
situations.

2 The Calculation

For the more general version of this problem the data consist of some number n of
measurements giving results xi for i = 1, . . . n . The probability distribution of each xi
is assumed to have a Gaussian form

P (xi|µ, σ) =
1√
2πσ

exp

(
−(xi − µ)2

2σ2

)
, (1)

with unknown mean µ and standard deviation σ. To go over to a lognormal, µ→ log(µ).
The parameters are µ and σ . The likelihood function for µ and σ is the product of

P (xi|µ, σ) for i = 1, . . . n, and therefore

L(µ, σ) ∝ 1

σn/2
exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2

)
=

1

σn/2
exp

(
− X

2σ2

)
, (2)

with
X ≡ (n− 1)s2x + n(µ− x)2 , (3)

where, just by doing some algebra, one sees that the data enter in via X only through
the sample mean and standard deviation defined by

x ≡ 1

n

n∑
i=1

xi

s2x ≡
1

n− 1

n∑
i=1

(xi − x)2 .

(4)

One needs to assume some definite form for the priors on µ and σ . We will assume
an alpha prior (Miller, 2013) on µ representing the prior probability distribution on true
amount µ (not log(µ) )

P (µ) ∝ µα−1 , (5)
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where α is a number less than or equal to 1, with 1 giving a flat prior and small values
giving a concentration at µ = 0. This form is assumed to extend from a minimum value
µmin, which can be 0, to a maximum value µmax , which is unimportant as long as it is
greater than the largest conceivable amounts for the problem (so that the data provide
the upper cutoff on the posterior probability).

For σ, the natural prior is logarithmic by scale invariance, but for more generality

P (σ) ∝ σ−p , (6)

where p = 1 gives P (σ)dσ ∝ d(log σ) = dσ/σ. This form extends from some small
minimum value σmin , which can be 0, to a maximum value σmax, which can be infinite.

Under these assumptions using the elementary rules for conditional probability (Bayes
theorem), the probability distribution of true amount, given the measurement results,
can be immediately written down:

P (µ′ < µ|data) =

∫ µ
µmin

(∫ σmax

σmin
L(µ′, σ)P (σ)dσ

)
P (µ′)dµ′∫ µmax

µmin

(∫ σmax

σmin
L(µ′, σ)P (σ)dσ

)
P (µ′)dµ′

. (7)

Results are shown in Fig. 1 for the example problem. The solid curves show the
posterior cumulative probability (probability that µ is less than the x-axis value) for a
uniform prior on µ ( α = 1) and a logarithmic prior on σ (p = 1 ). The dashed curves,
which are shifted to smaller values relative to the solid curves, are for the prior on µ
concentrated at 0 (α = 0.01). In this figure, the prior on σ has σmax = 3 , corresponding
to considering GSD’s greater than 20 to be unreasonable and not allowing them.
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Figure 1: Cumulative probability of true amount µ given three measurements of 0.2,
0.05, and 0.1 with the priors as discussed. The prior that is concentrated at 0
shifts the probability curve down to smaller values of µ .
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The priors on µ and σ would need to be justified empirically. For similar situations,
what is the distribution of µ actually observed? If only small values are seen, then a
prior with α small would be appropriate. Similarly, what are the values of sx actually
observed?

In the limit σmin → 0 and σmax →∞ , the integral over dσ converges and gives, for a
lognormal, the result

L(µ) ∝ X−n/4−(p−1)/2 , (8)

with X defined by Eq. 3, but this is a very broad distribution with a flat prior unless n is
10 or so, as shown in Fig. 2. This would seem to say that the number of measurements
should always be about this number or greater.
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Figure 2: Flat-prior cumulative probability of true amount µ for different numbers of
measurements.

Returning to the specific example problem, one would conclude using the probabilistic
approach that more data are needed in order to be sure that the exposure is less than
1, either old data for similar situations assembled together to justify the α prior, or new
data to use with a flat prior.

3 Algebraic Details

∫ σmax

σmin

P (σ)L(µ, σ)dσ =

∫ σmax

σmin

1

σn/2+p
exp

(
− X

2σ2

)
dσ . (9)
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Change variables to

Z =
X

2σ2

dZ = −X
σ3
dσ

(10)

obtaining∫ σmax

σmin

P (σ)L(µ, σ)dσ =

∫ Zmax

Zmin

σ3−p−n/2

X
exp(−Z)dZ

=
2n/4+(p−1)/2−1

Xn/4+(p−1)/2

∫ Zmax

Zmin

Zn/4+(p−1)/2−1 exp(−Z)dZ .

(11)

The upper limit on the right can be taken to Zmax → ∞ , because the exponential
exp(−Z) guarantees convergence. The lower limit can be taken to Zmin = 0 , because
the integral,

∫ Zmin

0
Zn/4+(p−1)/2−1 exp(−Z)dZ =

Z
n/4+(p−1)/2
min

n/4 + (p− 1)/2
. (12)

converges when n/4 + (p− 1)/2 > 0. For a non-zero Zmin (finite σmax ),

L(µ) ∝
∫ σmax

0
P (σ)L(µ, σ)dσ

∝ X−n/4−(p−1)/2
∫ ∞

X

2σ2max

Zn/4+(p−1)/2−1 exp(−Z)dZ .
(13)

The quantity given in Eq. 13, the likelihood function, when multiplied by the prior on µ
gives the probability distribution of µ that is sought. The likelihood function is plotted
in Fig. 3 for the example problem. For very large n, the likelihood function approaches
a lognormal with logarithmic standard deviation S = sx

√
2/n.
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Figure 3: Likelihood function from Eq. 13 for example problem with different limits on
prior on σ and showing the lognormal approximation valid for large n.
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