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The present paper proposes some Bayes estimators for shift point of Weibull
failure model under item - failure censoring. The censoring criterion intro-
duced first time in present paper for the shift point estimation. Bayes esti-
mators obtained here for both known as well as unknown shape parameter
cases. A simulation study carried out also for analysis of shift point Bayes
estimators and their risks.
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1 Introduction

The ’time of failure’ and ’average life’ of a component, measured from some specified
time until it fails, is represented by a continuous random variable. Extensively in recent
years, one distribution that has been used as a model to deal with such problems for
product life is Weibull distribution. The application of the Weibull failure model in life
- testing problems and survival analysis has been widely advocated by several authors
(Weibull, 1951 ; Berrettoni, 1964). Whittemore and Altschuler (1976) used it as a model
in bio-medical applications. It also has been used as model with diverse types of items
such as ball bearing (Lieblein and Zelen, 1956), vacuum tube (Kao, 1959), and electrical
isolation (Nelson, 1972). Mittnik and Rachev (1993) found that the Weibull distribution
might be adequate statistical model for stock returns. Recently, Wahed et al. (2009)
consider a new generalization of the Weibull distribution, which incorporates the expo-
nentiated Weibull distribution as a special case and its application in a breast cancer.
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The probability density function of the considered Weibull distribution is given by

f (x; v, θ) =
v

θ
xv−1 e−

xv

θ ; x > 0, v > 0, θ > 0. (1)

Here the parameter v referred as the shape parameter and θ as the scale parameter of
Weibull distribution, respectively. When v = 1, the Weibull failure model is Exponential
distribution and for v = 2, it is Rayleigh. Further the values lies in the range 3 ≤ v ≤ 4,
the shape of the distribution is close to that of Normal distribution and for a large value
of v, say v ≥ 10, is close to that of smallest extreme value distribution. In present arti-
cle, we study the properties of the Bayes shift point estimator under all four distributions.

Pandey (1983), Pandey et al. (1989), Chandra and Chaudhari (1990) considered the
estimation of the Weibull shape parameter in censored data. Singh and Shukla (2000),
Tsionas (2002), Prakash and Singh (2008) and others considered the Weibull distribution
in different contexts. Recently, Prakash and Singh (2009) present the estimation of the
Weibull shape parameter in failure censored sampling criteria.

The aim of the present article is to discuss about Bayes estimation of the shift point
for Weibull failure model under item failure censored data. The shift point criterion
discussed in Section 2. The Bayes estimators for shift point are obtained in Section 3
when one parameter is known and in Section 5 when both parameters are considered as
random variables. A simulation technique carried out in Section 4 and 6 for the illus-
tration of properties of the estimator in terms of posterior risk and Bayes estimate. The
sensitivity analysis and conclusion are presented in Section 7 and 8 respectively.

2 The Shift Point

In life testing, fatigue failures and other kinds of destructive test situations, the observa-
tions usually occurred in ordered manner such a way that weakest items failed first and
then second one and so on. Let us suppose that n items are put to test under the model
without replacement and the test terminates as soon as first rth (r ≤ n) item fails. This
censoring scheme is known as item - failure censoring scheme.

In order to obtain the information on their endurance, manufactured items such as
mechanical or electronic components are often put to life tests and life times observed
periodically. Physical systems manufacturing the items are often subject to random
fluctuations. It may happen that at some point of time, there is a change in the pa-
rameter. The objective of study is to find out when and where this change has started
occurring. This estimation process is called as the shift point inference problem. The
Bayesian model plays an important role in the study of such estimation problem and has
been extensively studied by Broemeling and Tsurumi (1987), Jani and Pandya (1999),
Ebrahimi and Ghosh (2001). Recently, Pandya and Jadav (2010) presents Bayesian esti-
mation of shift point in mixture of left truncated exponential and degenerate distribution.
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We are introducing first time the censoring criteria under shift point estimation. For
this let us first assume that a sequence of ordered random sample of size n such as
x(1), x(2), ..., x(r−1), x(r), x(r+1), ..., x(n) from the model (1) with parameters θ1 and v. All

n items are put to test and the test terminates as soon as first rth items fails.

We have a sequence of r (≤ n) ordered random sample x(1), x(2), ..., x(m−1), x(m) , x(m+1),
..., x(r) from assumed sample of size n with survival function Ψ1 (t) at any mission time
t(> 0), but later it is found that there is a change in the system at some point of time
m(≤ r) and it is reflected in the sequence after the item x(m) by the change in survival
function Ψ2 (t).

Thus, first m random observations x(1), x(2), ..., x(m) follow the model (1) with prob-
ability density function

f
(
x(i); v, θ1

)
=

v

θ1
xv−1

(i) e
−
xv
(i)
θ1 ; x(i) > 0, v > 0, θ1 > 0,

i = 1, 2, ...,m (m ≤ r, r ≤ n) (2)

with survival function

Ψ1

(
x(i)

)
= exp

(
−
xv(i)

θ1

)
. (3)

First remaining (r −m) components x(m+1), x(m+2), ..., x(r) from a sample of size r follow
the model (1) with the probability density function

f
(
x(i); v, θ2

)
=

v

θ2
xv−1

(i) e
−
xv
(i)
θ2 ; x(i) > 0, v > 0, θ2 > 0,

i = m+ 1,m+ 2, ..., r (m ≤ r, r ≤ n) (4)

with survival function

Ψ2

(
x(i)

)
= exp

(
−
xv(i)

θ2

)
. (5)

The last remaining group of the random samples x(r+1), x(r+2), ..., x(n) of size (n− r)
follows the Weibull model with parameters v and θ2 and having the probability density
function

f
(
x(i); v, θ2

)
=

v

θ2
xv−1

(i) e
−
xv
(i)
θ2 ; x(i) > 0, v > 0, θ2 > 0,

i = r + 1, r + 2, ..., n (n ≥ r) . (6)
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The likelihood function for the shift point under item - failure censoring criterion is
defined as

L
(
θ1, θ2,m|x(1), x(2), ..., x(r)

)
=

(
m∏
i=1

f
(
x(i) ; v, θ1

))
.(

r∏
i=m+1

f
(
x(i) ; v, θ2

))
.

(
exp

(
−
xv(r)

θ2

)n−r)
. (7)

Solving (7) we have

L
(
θ1, θ2,m|x(1), x(2), ..., x(r)

)
=

vr

θm1 θ
r−m
2

(
r∏
i=1

xv−1
(i)

)(
exp

(
−δ1

θ1
− δ2

θ2

))
; (8)

where δ1 =
∑m

i=1 x
v
(i) and δ2 =

∑r
i=m+1 x

v
(i) − (n− r)xv(i).

Substituting θ1 = θ = θ2 in (8) we have

L
(
θ|x(1), x(2), ..., x(r)

)
=
(v
θ

)r ( r∏
i=1

xv−1
(i)

) (
exp

(
−δ3

θ

))
; δ3 = δ1 + δ2. (9)

Equation (9) shows the likelihood function under the item - failure censoring criterion
without shift point.

Similarly, the likelihood function without shift point under the complete sample case
is obtain by substituting θ1 = θ = θ2 and r = n in (8) i.e.

L
(
θ|x(1), x(2), ..., x(n)

)
=
(v
θ

)n ( n∏
i=1

xv−1
(i)

) (
exp

(
−

n∑
i=1

xv(i)

θ

))
. (10)

3 Bayes Estimator for Shift Point (Shape Parameter
Known)

We believe, as stated in Arnold and Press (1983) that from a Bayesian viewpoint, there
is clearly no way in which one can say that one prior is better than other. It is more
frequently the case that, we select to restrict attention to a given flexible family of priors,
and we choose one from that family, which seems to match best with our personal beliefs.
One of the best choices of selecting the prior distribution is the conjugate prior. Thus in
the present case we considered the inverted Gamma distribution as the natural family
of conjugate prior for the parameter θ and defined as

g (θ) ∝ θ−(α+1) exp

(
−β
θ

)
; α > 0, β > 0, θ > 0. (11)
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Under the shift point criterion, the prior information regarding the parameter θ is re -
define as

gj (θj) ∝ θ
−(αj+1)
j exp

(
−βj
θj

)
; αj > 0, βj > 0, θj > 0, j = 1, 2. (12)

The prior distribution for the shift point m is considered as discrete uniform over the
set (1, 2, ..., r − 1) and defined as

g3 (m) =
1

r − 1
; r > 0. (13)

The joint prior distribution is thus defined as

h (θ1, θ2,m) ∝ g1 (θ1) . g2 (θ2) . g3 (m) .

Hence, the joint posterior density is defined as

Z (θ1, θ2,m) =
L
(
θ1, θ2,m|x(1), x(2), ..., x(r)

)
. h (θ1, θ2,m)∑

m

∫
θ1

∫
θ2
L
(
θ1, θ2,m|x(1), x(2), ..., x(r)

)
. h (θ1, θ2,m) dθ2dθ1

.

After simplification, the joint posterior density is

Z (θ1, θ2,m) = Φ θ
−(m+α1+1)
1 θ

−(r−m+α2+1)
2 exp

(
−ω1

θ1
− ω2

θ2

)
; (14)

where Φ = (
∑

m ∆)−1 , ∆ =

(
Γ(m+α1) Γ(r−m+α2)

ω
m+α1
1 ω

r−m+α2
2

)
and ωj = βj + δj ; j = 1, 2.

Now, the marginal posterior density for shift point m is obtain as

Z∗(m) = Φ

∫
θ1

∫
θ2

exp

(
−ω1

θ1
− ω2

θ2

)
θ
−(m+α1+1)
1 θ

−(r−m+α2+1)
2 dθ2 dθ1

⇒ Z∗(m) = Φ ∆. (15)

The Bayes estimator for shift point m under the squared error loss function (SELF) is
simply the posterior mean and obtained as

m̂S = Ep(m) = Φ

(∑
m

m∆

)
. (16)

Here, the suffix p indicates the expectation taken under the posterior density. The
posterior risk for the Bayes estimator m̂S is obtained as

R(S) (m̂S) =

∫ ∞
0

e−z zn−1
(
w(S)

)
dz,
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where w(s) = (m̂S −m)2 |(z) be the function of z.

The choice of the loss function may be crucial. It has always been recognized that
the most commonly used loss function, squared error loss function (SELF) is in appro-
priate in many situations. If the SELF is taken as a measure of inaccuracy then the
resulting risk is often too sensitive to the assumptions about the behavior of tail of
the probability distribution. In addition, in some estimation problems overestimation is
more serious than the underestimation, or vice - versa. To deal with such cases, a useful
and flexible class of asymmetric loss function (LINEX loss function (LLF)) is given as

L(∂) = ea∂ − a∂ − 1 ; ∂ = θ̂ − θ. (17)

Here ′a′ is the shape parameter of LLF and θ̂ is any estimate of the unknown parameter
θ. The negative (positive) value of ′a′, gives more weight to overestimation (underes-
timation) and its magnitude reflect the degree of asymmetry. It is also seen that, for
a = 1, the function is quite asymmetric with overestimation being costly than underes-
timation (See Parsian and Kirmani (2002), Singh et al. (2007)). For small values of |a|,
the LLF is almost symmetric and is not far from the SELF.

The Bayes estimator for the shift point m under LLF defined above is obtain as

m̂L = −1

a
ln Ep

{
e−am

}
= −1

a
ln

{
Φ
∑
m

∆e−am

}
. (18)

Similarly, the posterior risk for the Bayes estimator m̂L under LLF is

R(L) (m̂L) =

∫ ∞
0

e−z zn−1
(
ew(L) − w(L)

)
dz − 1;

where w(L) = a (m̂L −m) |(z) be the function of z.

4 Numerical Analysis (Shape Parameter Known)

To assess and study the properties of the Bayes estimators for shift point m when the
shape parameter v is known, a simulation study has been carried out. The random
samples are generated as follows:

1. Generate θ1 and θ2 through prior density g1(θ1) and g2(θ2) for the given values of
prior parameters αj and βj as (αj , βj) = (03, 02), (06, 10), (11, 30) , j = 1, 2. The
value of αj and βj are chosen so as to keep the prior variance unity.

2. Using θ1 and θ2 obtained in (1), and the considered values of shape parameter
v = 1.00, 2.00, 3.50, 12.00; generate the 10, 000 random samples of size n = 15 from
the model (2) and (4).
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3. Here the value of v = 1.00 and 2.00 should meet the criterion for the Exponential
and Rayleigh distribution respectively. Similarly others two values make the shape
of the distribution close to that of Normal and smallest extreme value distribution
respectively.

4. For the selected set of censored sample size r = 04, 06, 08, 10; the values of the
Bayes estimate and posterior risk for the shift point under the SELF have been
obtained and presented in the Table 01 - 02.

5. It is observed here that when censored sample size r increases the magnitude of
the Bayes estimator increases but the increment in magnitude is nominal (robust).

6. A decreasing trend has been seen when (αj , βj) increases.

7. It is also noted that when the values of the shape parameter v increases the mag-
nitude of the Bayes estimator also increases, however for large value of shape pa-
rameter v (say 12) i.e., for the smallest extreme value distribution the magnitude
of the Bayes estimator decreases.

8. With considered set of values and a = 0.25, 0.50, 1.00, 2.00; the magnitude of the
Bayes estimator under LLF and posterior risk have been obtained and presented
in the Table 03 - 04, only for a = 0.25, 1.00.

9. Similar properties as discussed above have been seen for the Bayes estimate of
the shift point m̂L. Further, an increasing trend in the magnitude of the estimate
also has been seen when ′a′ increases (except for large v) but the increment in
magnitude is robust.

10. It observed from tables that the magnitudes of posterior risk are smaller and
nominal. Other properties are seen to be similar as discussed above.

Remark:

In the case when the censored sample size r = 15; the censoring criterion is reduces to
the complete sample size criterion and hence the result are valid for complete sample
case.

5 Bayes Estimator of Shift Point (Shape Parameter
Unknown)

When both of the parameters θ and v of the considered model (1) are unknown, there
do not exist any joint conjugate prior distribution. One of the good choices of the joint
prior distribution when both parameters are unknown is given by

g (θ, v) = g (θ|v) . f(v). (19)
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The prior distributions g (θ|v) and f(v) are defined as

g (θ|v) =
vα

Γ(α)
θ−(α+1) exp

(
−v
θ

)
; α > 0, v > 0, θ > 0

and

f(v) =
bc

Γ(c)
θ−(c+1) exp

(
− b
v

)
; b > 0, c > 0, v > 0.

When both parameters are considered to be unknown, the likelihood function is given
as

L
(
θ1, θ2, v,m|x(1), x(2), ..., x(r)

)
=

vr

θm1 θr−m2

(
r∏
i=1

xv−1
(i)

)
(
exp

(
−δ1

θ1
− δ2

θ2

))
. (20)

The joint prior distribution is now defined as

h1 (θ1, θ2, v,m) ∝ g1 (θ1|v) . g2 (θ2|v) . f(v) . g3 (m) ;

where gj (θj |v) = vαj

Γ(αj)
θ
−(αj+1)
j exp

(
− v
θj

)
; αj > 0, v > 0, θj > 0, j = 1, 2.

Thus, the joint posterior density is obtained as

Z1 (θ1, θ2, v,m) =
1

K1
L
(
θ1, θ2, v,m|x(1), x(2), ..., x(r)

)
. h1 (θ1, θ2, v,m)

where K1 =
∑

m

∫
v

∫
θ1

∫
θ2
L
(
θ1, θ2, v,m|x(1), x(2), ..., x(r)

)
.h1 (θ1, θ2, v,m) .dθ2.dθ1.dv

After simplification the joint posterior density is

Z1 (θ1, θ2, v,m) = Φ̄ θ
−(m+α1+1)
1 θ

−(r−m+α2+1)
2 ξ(v) exp

(
−ω3

θ1
− ω4

θ2

)
; (21)

where Φ̄ =
(∑

m
¯̄∆
)−1

, ¯̄∆ =
∫
v ξ(v)∆̄dv, ∆̄ =

(
Γ(m+α1) Γ(r−m+α2)

ω
m+α1
3 ω

r−m+α2
4

)
, ξ(v) = vr+α1+α2−c−1∏r

i=1 x
v−1
(i) exp

(
− b
v

)
and ωj+2 = v + δj ; j = 1, 2.

The marginal posterior density for shift point m in present case is obtain as

Z∗1 (m) =

∫
θ1

∫
θ2

∫
v
Z1 (θ1, θ2, v,m) dv. dθ2. dθ1

⇒ Z∗1 (m) = φ̄ ¯̄∆. (22)

The Bayes estimator for the shift point estimator m under the SELF is

m̂S1 = φ̄
∑
m

(
m ¯̄∆

)
. (23)
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Similarly, the Bayes estimator for the shift point under the LLF is given by

m̂L1 = −1

a
ln

{
φ̄
∑
m

(
e−am ¯̄∆

)}
. (24)

The posterior risk for Bayes estimators m̂S1 and m̂L1 are obtained similarly as in known
shape parameter case.

6 Numerical Analysis (Shape Parameter Unknown)

When both parameters are considered as the random variable, a simulation study also
has been carried out to study the properties of the Bayes estimators for shift point as
follows:

1. Generate the values of the shape parameter v through prior density f(v) for the
given set of values (c, b) = (03, 02), (06, 10), (11, 30). The value of c and b are chosen
so as to keep the prior variance unity.

2. Using the generated values of v in (1), we generate the values of θ1 and θ2 for the
previous selected values of prior parameter.

3. Using above generated values of θ1, θ2 and v obtained in steps (1) & (2), generate
the 10, 000 random samples of size n = 15 form the considered model.

4. The values of Bayes estimate m̂S1 for shift point under SELF and Posterior risk
has been obtain for censored sample size r = 04, 06, 08, 10, and presented in Tables
05 - 06.

5. All the properties are seen similar as compared to m̂S (known shape parameter
case).

6. Using similar set of parametric values as discussed earlier, the magnitude of Bayes
estimator m̂L1 under LLF and Posterior risk have been obtained and presented in
Tables 07 - 08, only for a = 0.25, 1.00.

7. An increasing trend in the magnitude of the estimate also has been seen when ′a′

increases but the increment in magnitude is least (robust). Others properties are
similar as in case of known shape parameter.

8. Both the estimators are robust and the magnitudes of posterior risk are least.
Other properties are seen to be similar as discussed above

7 Sensitivity of Bayes Estimates

Following Calabria and Pulcini (1996), we study the sensitivity of the Bayes estimator
with respect to change in prior of parameters. The prior mean and prior variance
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(
µj , σ

2
j ; j = 1, 2

)
have been used as the prior information in computing the hyper -

parameters of the prior distribution. The sensitivity analysis is based on assumption
that the prior information to be correct if the true value of the parameters θ1 (θ2) is
close to prior mean µ1 (µ2) and is assumed to be wrong if the parameters θ1 (θ2) is far
from the prior mean µ1 (µ2). For this, we have computed the posterior mean for the
selected set of parameters as discussed in section 4 and presented in Table 09. It is seen
from the table that the posterior mean appears to be robust with respect to the correct
choice as well as wrong choice of the prior density of θ1 (θ2).

8 Conclusion

Two parameter Weibull distribution is consider here as the underlying model for the
study. The study of shift point estimation for the Weibull model is performing under
the Bayesian approach. The censoring criteria inside the shift point estimation have
been proposed first time in present article. Both known and unknown case of shape
parameter is considered here for the study of Bayes estimation of the shift point under
the symmetric and asymmetric loss function.

A simulation study has been carried out for the study of the properties of the Bayes
estimation. Based on the findings the magnitude of the estimator is robust. It is also
observed that when the value of the shape parameter of LLF is small the difference
between the magnitudes of Bayes estimates under SELF and LLF is robust.
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Table 1: Bayes Estimate of m̂S (Shape Parameter Known)

n = 15 r ↓
v (βj , αj) ; j = 1, 2 ↓ 4 6 8 10 15

1.00 02, 03 4.6848 4.6990 4.7084 4.7178 4.7271

1.00 10, 06 4.6449 4.6588 4.6681 4.6774 4.6867

1.00 30, 11 4.1847 4.1973 4.2057 4.2140 4.2223

2.00 02, 03 4.7112 4.7252 4.7347 4.7442 4.7537

2.00 10, 06 4.6910 4.7053 4.7146 4.7239 4.7331

2.00 30, 11 4.6908 4.7049 4.7143 4.7237 4.7330

3.50 02, 03 4.8053 4.8198 4.8294 4.8390 4.8487

3.50 10, 06 4.7849 4.7993 4.8088 4.8183 4.8278

3.50 30, 11 4.7002 4.7143 4.7237 4.7330 4.7424

12.00 02, 03 4.5584 4.5720 4.5812 4.5904 4.5996

12.00 10, 06 4.5389 4.5527 4.5617 4.5707 4.5797

12.00 30, 11 4.4587 4.4719 4.4808 4.4897 4.4986

Table 2: Posterior Risk for m̂S (Shape Parameter Known)

n = 15 r ↓
v (βj , αj) ; j = 1, 2 ↓ 4 6 8 10 15

1.00 02, 03 1.6709 1.6758 1.6792 1.6826 1.6860

1.00 10, 06 1.6133 1.6182 1.6214 1.6246 1.6278

1.00 30, 11 1.5352 1.5398 1.5428 1.5459 1.5490

2.00 02, 03 1.7614 1.7667 1.7702 1.7737 1.7773

2.00 10, 06 1.7007 1.7058 1.7092 1.7126 1.7160

2.00 30, 11 1.6184 1.6232 1.6265 1.6297 1.6329

3.50 02, 03 1.7640 1.7694 1.7729 1.7765 1.7800

3.50 10, 06 1.7142 1.7195 1.7229 1.7263 1.7296

3.50 30, 11 1.6620 1.6670 1.6704 1.6737 1.6770

12.00 02, 03 1.7740 1.7792 1.7828 1.7864 1.7900

12.00 10, 06 1.6974 1.7025 1.7059 1.7093 1.7127

12.00 30, 11 1.4827 1.4872 1.4902 1.4931 1.4960
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Table 3: Bayes Estimate of m̂L (Shape Parameter Known)

n = 15, a = 0.25 r ↓
v (βj , αj) ; j = 1, 2 ↓ 4 6 8 10 15

1.00 02, 03 4.3086 4.3215 4.3301 4.3387 4.3475

1.00 10, 06 4.2718 4.2846 4.2931 4.3016 4.3102

1.00 30, 11 3.8487 3.8602 3.8678 3.8755 3.8832

2.00 02, 03 4.3800 4.3931 4.4018 4.4106 4.4195

2.00 10, 06 4.3612 4.3744 4.3831 4.3918 4.4004

2.00 30, 11 4.3610 4.3740 4.3828 4.3916 4.4003

3.50 02, 03 4.5302 4.5437 4.5528 4.5619 4.5710

3.50 10, 06 4.5108 4.5245 4.5334 4.5423 4.5512

3.50 30, 11 4.4311 4.4443 4.4531 4.4619 4.4707

12.00 02, 03 4.2471 4.2597 4.2682 4.2769 4.2855

12.00 10, 06 4.2290 4.2418 4.2501 4.2584 4.2670

12.00 30, 11 4.1542 4.1665 4.1748 4.1831 4.1914

n = 15, a = 1.00

1.00 02, 03 4.9367 4.9514 4.9613 4.9712 4.9812

1.00 10, 06 4.8945 4.9092 4.9188 4.9287 4.9385

1.00 30, 11 4.4096 4.4229 4.4316 4.4404 4.4493

2.00 02, 03 5.0118 5.0267 5.0367 5.0468 5.0570

2.00 10, 06 4.9903 5.0054 5.0153 5.0252 5.0351

2.00 30, 11 4.9901 5.0050 5.0151 5.0249 5.0350

3.50 02, 03 5.7031 5.7200 5.7316 5.7430 5.7544

3.50 10, 06 5.6787 5.6959 5.7072 5.7184 5.7296

3.50 30, 11 5.5783 5.5949 5.6059 5.6172 5.6283

12.00 02, 03 4.0208 4.0328 4.0409 4.0491 4.0572

12.00 10, 06 4.0037 4.0158 4.0237 4.0316 4.0396

12.00 30, 11 3.9328 3.9445 3.9524 3.9603 3.9681
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Table 4: Posterior Risk for m̂L (Shape Parameter Known)

n = 15, a = 0.25 r ↓
v (βj , αj) ; j = 1, 2 ↓ 4 6 8 10 15

1.00 02, 03 1.3467 1.3507 1.3534 1.3562 1.3589

1.00 10, 06 1.3394 1.3434 1.3460 1.3487 1.3514

1.00 30, 11 1.3114 1.3152 1.3179 1.3205 1.3231

2.00 02, 03 1.4365 1.4408 1.4437 1.4466 1.4495

2.00 10, 06 1.4286 1.4330 1.4358 1.4386 1.4414

2.00 30, 11 1.3988 1.4029 1.4057 1.4085 1.4113

3.50 02, 03 1.5984 1.6032 1.6064 1.6096 1.6129

3.50 10, 06 1.5682 1.5729 1.5760 1.5791 1.5823

3.50 30, 11 1.3729 1.3770 1.3797 1.3824 1.3852

12.00 02, 03 1.6249 1.6298 1.6330 1.6363 1.6396

12.00 10, 06 1.6010 1.6058 1.6090 1.6122 1.6154

12.00 30, 11 1.5556 1.5602 1.5634 1.5665 1.5696

n = 15, a = 1.00

1.00 02, 03 1.3573 1.3614 1.3641 1.3669 1.3696

1.00 10, 06 1.3446 1.3486 1.3512 1.3540 1.3567

1.00 30, 11 1.3137 1.3176 1.3203 1.3229 1.3255

2.00 02, 03 1.4478 1.4522 1.4551 1.4580 1.4609

2.00 10, 06 1.4342 1.4386 1.4414 1.4442 1.4470

2.00 30, 11 1.4013 1.4054 1.4082 1.4110 1.4138

3.50 02, 03 1.6110 1.6159 1.6191 1.6223 1.6256

3.50 10, 06 1.5743 1.5790 1.5821 1.5853 1.5885

3.50 30, 11 1.3754 1.3795 1.3822 1.3849 1.3877

12.00 02, 03 1.6377 1.6427 1.6459 1.6492 1.6525

12.00 10, 06 1.6072 1.6121 1.6153 1.6185 1.6217

12.00 30, 11 1.5584 1.5630 1.5662 1.5693 1.5724
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Table 5: Bayes Estimate of m̂S1 (Shape Parameter Unknown)

n = 15 r ↓
α1 = α2 (b, c) ↓ 4 6 8 10 15

1.00 02, 03 4.3800 4.3932 4.4019 4.4108 4.4195

1.00 10, 06 4.3427 4.3556 4.3643 4.3730 4.3817

1.00 30, 11 3.9125 3.9242 3.9320 3.9398 3.9476

2.00 02, 03 4.4502 4.4635 4.4725 4.4814 4.4904

2.00 10, 06 4.4312 4.4447 4.4534 4.4622 4.4709

2.00 30, 11 4.4310 4.4443 4.4531 4.4620 4.4708

3.50 02, 03 4.6300 4.6438 4.6531 4.6625 4.6717

3.50 10, 06 4.6102 4.6241 4.6333 4.6424 4.6516

3.50 30, 11 4.5287 4.5422 4.5511 4.5602 4.5693

12.00 02, 03 4.2618 4.2745 4.2830 4.2917 4.3002

12.00 10, 06 4.2436 4.2564 4.2648 4.2732 4.2817

12.00 30, 11 4.1685 4.1810 4.1892 4.1976 4.2060

Table 6: Posterior Risk for m̂S1 (Shape Parameter Unknown)

n = 15 r ↓
α1 = α2 (b, c) ↓ 4 6 8 10 15

1.00 02, 03 1.0448 1.0480 1.0501 1.0522 1.0543

1.00 10, 06 0.9491 0.9519 0.9538 0.9557 0.9576

1.00 30, 11 0.8159 0.8184 0.8200 0.8216 0.8233

2.00 02, 03 1.1061 1.1094 1.1116 1.1138 1.1161

2.00 10, 06 1.0570 1.0603 1.0623 1.0644 1.0665

2.00 30, 11 0.9033 0.9060 0.9078 0.9096 0.9114

3.50 02, 03 1.1971 1.2006 1.2030 1.2055 1.2078

3.50 10, 06 1.0997 1.1031 1.1053 1.1074 1.1096

3.50 30, 11 0.9897 0.9927 0.9946 0.9966 0.9986

12.00 02, 03 1.1871 1.1906 1.1930 1.1954 1.1978

12.00 10, 06 1.1749 1.1784 1.1807 1.1831 1.1854

12.00 30, 11 0.8915 0.8941 0.8959 0.8977 0.8995
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Table 7: Bayes Estimate of m̂L1 (Shape Parameter Unknown)

n = 15, a = 0.25 r ↓
α1 = α2 (b, c) ↓ 4 6 8 10 15

1.00 02, 03 4.1015 4.1137 4.1220 4.1303 4.1385

1.00 10, 06 4.0665 4.0787 4.0867 4.0948 4.1030

1.00 30, 11 3.6636 3.6746 3.6819 3.6892 3.6966

2.00 02, 03 4.1164 4.1286 4.1368 4.1451 4.1534

2.00 10, 06 4.0987 4.1111 4.1193 4.1274 4.1355

2.00 30, 11 4.0985 4.1108 4.1190 4.1272 4.1354

3.50 02, 03 4.5857 4.5995 4.6087 4.6179 4.6272

3.50 10, 06 4.5663 4.5800 4.5891 4.5981 4.6072

3.50 30, 11 4.4855 4.4988 4.5077 4.5167 4.5256

12.00 02, 03 3.3406 3.3505 3.3573 3.3640 3.3708

12.00 10, 06 3.3264 3.3364 3.3429 3.3496 3.3563

12.00 30, 11 3.2675 3.2772 3.2838 3.2903 3.2968

n = 15, a = 1.00

1.00 02, 03 4.5248 4.5382 4.5474 4.5565 4.5656

1.00 10, 06 4.4862 4.4996 4.5085 4.5174 4.5264

1.00 30, 11 4.0417 4.0538 4.0619 4.0699 4.0781

2.00 02, 03 4.5412 4.5547 4.5637 4.5729 4.5821

2.00 10, 06 4.5217 4.5354 4.5444 4.5534 4.5623

2.00 30, 11 4.5215 4.5350 4.5441 4.5531 4.5622

3.50 02, 03 5.1171 5.1324 5.1427 5.1529 5.1632

3.50 10, 06 5.0952 5.1106 5.1208 5.1308 5.1410

3.50 30, 11 5.0051 5.0200 5.0299 5.0400 5.0500

12.00 02, 03 3.6787 3.6896 3.6970 3.7045 3.7120

12.00 10, 06 3.6630 3.6740 3.6812 3.6885 3.6959

12.00 30, 11 3.5981 3.6088 3.6161 3.6233 3.6305
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Table 8: Posterior Risk for m̂L1 (Shape Parameter Unknown)

n = 15, a = 0.25 r ↓
α1 = α2 (b, c) ↓ 4 6 8 10 15

1.00 02, 03 1.2703 1.2741 1.2766 1.2792 1.2817

1.00 10, 06 1.2594 1.2632 1.2657 1.2682 1.2707

1.00 30, 11 1.1347 1.1381 1.1403 1.1425 1.1449

2.00 02, 03 1.2749 1.2787 1.2812 1.2838 1.2864

2.00 10, 06 1.2694 1.2732 1.2758 1.2783 1.2808

2.00 30, 11 1.2694 1.2732 1.2757 1.2782 1.2808

3.50 02, 03 1.4365 1.4409 1.4437 1.4466 1.4495

3.50 10, 06 1.4305 1.4348 1.4376 1.4404 1.4433

3.50 30, 11 1.4051 1.4093 1.4121 1.4149 1.4177

12.00 02, 03 1.0328 1.0358 1.0379 1.0400 1.0421

12.00 10, 06 1.0283 1.0314 1.0335 1.0355 1.0376

12.00 30, 11 1.0101 1.0132 1.0152 1.0172 1.0192

n = 15, a = 1.00

1.00 02, 03 1.3526 1.3566 1.3593 1.3621 1.3648

1.00 10, 06 1.3410 1.3450 1.3477 1.3504 1.3531

1.00 30, 11 1.2082 1.2118 1.2142 1.2166 1.2190

2.00 02, 03 1.3575 1.3615 1.3642 1.3670 1.3697

2.00 10, 06 1.3516 1.3557 1.3584 1.3611 1.3638

2.00 30, 11 1.3516 1.3557 1.3584 1.3611 1.3638

3.50 02, 03 1.5123 1.5168 1.5198 1.5229 1.5259

3.50 10, 06 1.5058 1.5104 1.5133 1.5163 1.5193

3.50 30, 11 1.4792 1.4836 1.4865 1.4895 1.4924

12.00 02, 03 1.1017 1.1049 1.1072 1.1094 1.1116

12.00 10, 06 1.0970 1.1003 1.1024 1.1046 1.1068

12.00 30, 11 1.0775 1.0808 1.0829 1.0851 1.0872
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Table 9: Estimate of Posterior Mean

n = 15 Posterior Mean

µ1 µ2 4 6 8 10

1.00 1.00 6.9851 7.9328 8.2158 9.3305

2.00 2.00 6.9855 7.9333 8.2163 9.3311

3.00 3.00 6.9862 7.9341 8.2169 9.3317
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