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Extreme occurrences such as extreme gains and extreme losses in finan-
cial market are unavoidable. Accurate knowledge of dependence on these
extremes can help investors to adjust their portfolio mix accordingly. This
paper therefore focuses on modeling dependence in extreme gains and losses
in a portfolio consisting of three assets using D-Vine Copula. The concept
of extreme value theory (EVT) is used to identify the sets of extreme gains
and extreme losses in each asset contained in the portfolio. For the three
assets considered, a total of six sets (3 sets of extreme gains and 3 sets of
extreme losses) are use in the dependence modeling. The inference function
for margin (IFM) approach is used in the analysis. The first stage of the
IFM is the modeling of the marginal distributions; this is done using the
peak over threshold approach under EVT. The returns are first filtered using
GARCH-type models before the EVT analysis. The second stage of the IFM
approach is the dependence modeling; this is done using D-vine copula. The
D-vine copula is a class of regular vine copula that uses various bivariate
copulas as building blocks. Empirical evidence using D-Vine copula for the
dependence modeling shows that, both positive and negative dependence ex-
ist between pairs of tails, for both conditional and unconditional pairs. Some
dependence parameters between upper and lower tails of two different assets
in the portfolio are positive, showing that an extreme gain in one asset is
associated with an extreme loss in another asset in the same portfolio.
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1 Introduction

Modeling dependence has always been a vital concept in financial management, es-
pecially financial risk management. Extreme occurrences such as extreme gains and
extreme losses in financial market are unavoidable. Awareness of dependence in these
extremes is a major step towards proper allocation of assets to a portfolio. Knowledge
of dependence can also help investors to avoid possible losses by adjusting their portfolio
mix accordingly.

Moreover, according to Kahneman and Tversky (1979), in their sturdy of human
decision making, the pain people feel from a loss is about twice as strong as the pleasure
felt from an equivalent experience of gain. As a result of this human behavior, when
people are faced with investment decisions, they tend to have a stronger preference to
avoid possible losses than for making gains and are willing to give up more to avoid
possible losses. Investor are most likely to choose an outcome that has less risk of an
experience loss and a lower expected return than an alternative choice that had greater
risk of potential loss and a higher expected return.

In addition, it is well known that financial returns appear to have heavy tailed or
leptokurtic distribution. Compared to the Normal or Gaussian distribution, return dis-
tributions tend to exhibit excess kurtosis (i.e. kurtosis greater than 3) indicating that
returns have more mass in the tails than predicted by the normal distribution (MacKin-
lay et al., 1997) this paper, the extreme value theory is employed to model the tails of
each asset return using peak over threshold (POT) approach. All sets of observations
above (for upper tail) and below (for lower tail) the selected threshold for each asset are
used in the dependence modeling using D-Vine Copula

Again, due to the difficulties associated with modeling dependence in multivariate
return series, most of the financial literature makes use of multivariate normal and t
distributions, despite their short comings. Recently, copulas have emerged as a powerful
and flexible tool to create more flexible and realistic multivariate distribution in finance
(Cherubini et al., 2004). However, although there exist a huge number of parametric
bivariate copulas and also fairly large number of non-parametric bivariate copula, the
range of higher dimensional copula is rather limited. Apart from the Gaussian and
t copulas, one occasionally finds multivariate elliptical and Archimedean copulas. A
number of empirical papers had shown that Gaussian copula do not fit financial returns
data well (Mashal and Zeevi, 2002; Dobrić and Schmid, 2005). Both the Gaussian
and the t copulas do not allow for different dependence structures between pairs of
variables. A disadvantage of the student-t copula is it non-unimodality that makes it
implausible for modeling joint returns (Schmidt and Theodorescu, 2006). Archimedean
copulas seem to fit bivariate returns distribution well (Savu and Trede, 2008), but they
are extremely restrictive in higher dimensional case, as they imply exchangeability and
hence equicorrelated returns.

With the above difficulties in multivariate dependence modeling, this work used the
D-vine copula to model the dependence structure in the multivariate extremes series.
Vine copulas in general do not suffer from any of the above mentioned problems in the
multivariate case, as it benefits from the wide variety of bivariate copulas use as building
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blocks. Vine copula was initially proposed by Joe (1996) and developed in more details
in Bedford and Cooke (2001), Bedford and Cooke (2002) and in Kurowicka and Cooke
(2006). Vines are flexible graphical models for describing multivariate copulas. They
are build up using cascade of bivariate copulas (so-called pair copula), where each pair-
copula can be chosen independently from the others. In particular, asymmetries and tail
dependence can be taken in to account as well as (conditional) independence to build
more parsimonious models. Their statistical breakthrough was due to the works of Aas
et al. (2009) who described statistical inference technique for the two classes of canonical
(C-) and D-vines.

2 Materials (Theoretical Framework)

This section contains theories and concepts used in the empirical analysis.

2.1 An overview of Extreme Value Theory (EVT)

Extreme value theory (EVT) is a branch of statistics that deals with extreme deviations
from the median of probability distribution. It deals with events that have at least three
things in common, they occur rarely, they are extreme in scope and they are difficult
to predict. The EVT seeks to asses from a given ordered sample of a given random
variable, the probability of events that are more extreme than any observed prior. In
particular, it provides a theoretical framework for analyzing rare events and it has been
known as the cousin of the well-known central limit theorem, as both theorems tell us
what the limiting distributions are as the sample size increases. There are two main
approaches for modeling extreme values, the block maxima approach and the peak over
threshold (POT) approach (Embrocates et al., 1997). The second approach, the peak
over threshold (POT) approach is used in the empirical analysis. We therefore discuss
only the peak over threshold approach.

2.1.1 Peak over Threshold (POT) Approach

The POT approach consists of choosing a given threshold (high enough) and considering
the extreme observations exceeding this threshold. The choice of the threshold is subject
to a trade-off between the variance and bias. By increasing the number of observation
in the tails, some observation from the center of the distribution are introduced in to
the series and the index of the tail is more precise (less variance) but biased. On the
other hand choosing a high threshold (for the upper tail) reduces the bias but makes the
estimator more volatile (fewer observations).

Balkema and de Hann-Pickands Theorem: It is possible to find a positive mea-
surable function β, where β is a function of u, such that:

limu→f (x) sup
(0≤x≥x)

(
|Fu(x)−G(ξ,β)(x)|

)
(1)
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if and only if FεMDA(Hξ(x)). That is, for a large class of underlying distribution Fu,
as the threshold u gradually increases, the excess distribution function EQA converges
to a generalized Pareto distribution.

2.1.2 The Generalized Pareto distribution

The Generalized Pareto distribution (GPD) is the limiting distribution of the peak over
threshold approach and is defined as:

Gξ,u,β(x) =

{
1− (1 + ξ x−uβ )

−1
ξ if ξ 6= 0

−e(−
x−u
β

)
if ξ = 0

with

x =

{
u,∞ if ξ ≥ 0

u, u− β
ξ if ξ < 0

where ξ is the shape parameter. β is the scale parameter, and u is the location
parameter. Just like the Generalized Extreme Value distribution, the GPD distribution
contains three distributions as particular cases: Ordinary Pareto distribution: ξ = α−1 >
0, Pareto type distribution ξ = 0 Exponential distribution: ξ = α−1 < 0

2.2 Copula Theory

Copula, according to Nelson (2006), can be explained from two points of view, first,
copulas are functions that join or couple multivariate distribution functions to their one
dimensional marginal distribution function. Second, Copulas are multivariate distribu-
tion functions whose dimensional margins are uniform on the interval [0,1]. Practically,
a copula is often used to construct joint distribution function by combining the marginal
distributions and the dependence between the variables.

Properties: We only focus on bivariate copulas, as bivariate copulas are used as build-
ing blocks in modeling dependence using D-vine copula. A 2-dimensional copula is a
function c: [0, 1]2 → [0, 1] with the following properties:

1. For everyu ∈ [0, 1], C[0, u] = C(u, 0) = 0

2. For every u ∈ [0, 1], C(u, 1) = u and C(1, u) = u

3. For every (u1, u2),(v1, v2) ∈ [0, 1][0, 1] with u1 ≤ v1 and u2 ≤ v2 : C(v1, v2) −
C(v1, u2)− C(u1, v2) + C(u1, u2)0

Property 1 is referred to as the grounded property of copula. It says that the joint
probability of both outcomes is zero if the marginal probability of any out comes is
zero; Property 3 is the two-dimensional analogue of a non-decreasing one-dimensional
function. A function with this feature is therefore called 2-increasing.
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Sklar’s Theorem: Let H be a 2-dimentional joint distribution function with marginal
distributions F and G. There exists a copula C such that:

H(x, y) = C(F (x), G(y))

, If F and G are continuous, then C is unique. Conversely, if C is a copula and F
and G are distribution functions, then the function H is a joint distribution function
with marginal distributions F and G. The converse of this theorem implies that the
combination of two different marginal distributions with any copula will define a valid
bivariate distribution.

Corollary: Let H be a 2-dimentional joint distribution with continuous marginal dis-
tribution F and G with copula C, Satisfying Sklar’s theorem, then for

u ∈ [0, 1] & v ∈ [0, 1]

and
v ∈ [0, 1] : C(u, v) = H(F (−1)(u), G(−1)(v))

where F−1 and G−1 denote the inverses of F and G. This corollary provides a mo-
tivation for calling a copula a dependence structure as it links the quantiles of two
distributions rather than the original variables.

2.2.1 Conditional Copula

The conditional copula of (X,Y |W ) = w where

X |W = w ∼ F1(X|W )(. | w) and Y |W = w ∼ F1(Y |W )(. | w)

is the conditional joint distribution function of U ≈ F1(X |W )(X | w) and

V ≈ F1(Y |W )(Y | w) given W = w.

The two variables U and V are known as the conditional “probability integral trans-
forms”of X and Y given W. These variables have Uniform (0,1) distributions, regardless
of the original distribution of X and Y (Fisher, 1925; Rosenblatt, 1952). Patton (2002)
shows that a conditional copula has all of the properties of the unconditional copula.

As bivariate copulas are used as building blocks in the dependence modeling using
D-Vine, we next present the Fréchet-Hoeffding bounds for bivariate copulas.

2.2.2 Fréchet Hoeffding copula bounds

Due to the existence of some extreme cases of dependence, Frėchet and Hoeffding inde-
pendently showed that, a copula always lies in between certain bounds.
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Theorem: For any sub-copula C
′

with domain S1 × S2 and for any (u, v) ∈ S1 × S2

C−(u, v) := max(u+ v − 1, 0) ≤ C ′(u, v) ≤ min(u, v) =: C+C−

and
C+

are the Fréchet-Hoeffding lower and upper bound respectively. The Frėchet Hoeffding
lower bound corresponds to perfect negative dependence and the upper bound corre-
sponds to perfect positive dependence. Random variables say,X1, . . . , Xd are said to be
comonotonic if their copula corresponds to C+ and countermonotonic if their copula cor-
responds to C−. Some copulas, like the Clayton copula attains only the Frechet upper
bounds (as θ →∞) while others like the Frank Copula attain both the Frechet’s upper
and lower bounds(as θ →∞ and θ → −∞ respectively).

2.2.3 Monte Carlo integration for copula models

Consider the random vector (X1, . . . , Xd) with cdf H, the expectation of a response
function g : Rd → R applied to this random vector can thus be written as

Eg(X1, . . . , Xd) =

∫
d
Rg(x1), . . . , xd)dH(x1, . . . , xd)

If H is given by a copula model and the copula, C is absolutely continuous, i.e. C has
a density c, this expectation can be rewritten as

E[g(X1, . . . , Xd)] =

∫
[0,1]d

g
(
F−11 (u1), . . . , F

−1
d (ud)

)
)c(u1, . . . , ud)du1, . . . , dud

If copula and margins are known, the expectation can be approximated through the
following Monte Carlo algorithm:

1. Draw a sample (Uk1 , . . . , U
k
d ) ∼ C(K = 1, . . . , n) of size, n from the copula c.

2. Produce a sample of (X1, . . . , Xd) by setting (Xk
1 , . . . , X

k
d ) = (F−11 (Uk1 ), . . . , F−1d (Ukd ) ∼

H(k = 1, . . . , n)

3. Approximate E[g(X1, . . . , Xd)] by its empirical value:

E[g(X1, . . . , Xd)] ≈ 1
n

∑n
i=1 g(Xk

1 , . . . , X
k
d )

2.2.4 Pair-Copula Decomposition of a multivariate Distribution

Pair copulas, originally introduce by Joe (1996) provide a flexible way to construct multi-
variate distribution. In using vine copula, the first step is to decompose the multivariate
copula into a cascade of bivariate copulas using the idea of pair copula decomposition.
Hence the multivariate density with dimension d can be factorized as
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f(x1, . . . , xd) = f(xd|x1, . . . , xd−1).f(x1, . . . , xd−1) = f(xd).f(xd−1|xd)·

·f(xd−2|xd−1, xd), . . . , f(x1 | x2, . . . , xd)

To get a pair copula for f(x1 . . . xd), we only need to replace each of the conditional
densities bit by bit with products of pair-copulas and marginal densities. The following
examples illustrate the construction of pair copula. For d=3, the joint 3-dimentional
density can be decompose as:

f(x1, x2, x3) = f1(x1).f2|1(x2|x1).f3|12(x3|x1, x2)

In general,

f(xd−2|xd−1, xd), . . . , f(x1 | x2, . . . , xd)f(xj | xi =
f(xi, xj)

fi(xi)
= f(xi, xj) | (fi(xi)) =

= cij(Fi(xi), Fj(xj)).fj(xj).fi(xi))

The multivariate density factorization can thus be express in terms of the marginal
densities and a product of d(d−1)2 (d is the dimension of the multivariate density) bivariate
pair-copulas, using the following formula iteratively:

f(x | v) = cxvj |vj |v−j
(
Fx|v−j (x | v−j), Fvj |v−j (vj | v−j

)
.f(x | v−j)

where v = (v1, . . . , vd) is a vector vj with j = 1, . . . , d the jth element of this vector
and v−j = (v1 . . . vj−1, vj+1 . . . , vd) the vector v without the j − th component. Hence,

a four dimensional density (d = 4) can be decomposed into 4(4−1)
2 = 6 pair- copulas and

four marginal densities.
The conditional marginal distributions, F (x | v) can be calculated reclusively. Joe

(1996) showed that, for every j,

F (x | v) =
δcx,vj |v(−j)(F (x| | v−j).F (vj | v−j))

δF (vj |v−j)

where C(ij|k) is a bivariate copula distribution function. When v is univariate and x
and v are uniformly distributed on the [0,1] interval, we have

F (x | v) =
δCxv(x, v)

δv

The function h(x, v,Θ) is called the h(.) function, and is:

h(x, v,Θ) = F (x | v) =
δCxv(x, v)

δv

Here, Θ represent the set of parameters for the copula of the joint distribution function
of x and v. The inverse of this h(.) function, h−1(x, v,Θ) with respect to the first variable
x, is needed for sampling from pair-copula distribution.
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2.2.5 Vine Structure

Vines are graphical representations to specify pair copula construction. The C- and D-
vines are most appropriate if their structure is explicitly motivated by the data. There
are many ways to decompose multivariate density function in to pair copula. However
Bedford and Cooke (2001) and Bedford and Cooke (2002) have introduced a graphical
model called a regular vine to help organize all possible decompositions.

The D- vines are constructed by choosing a specific order of the variables. For example,
in the first tree, the dependence of the first and second; second and third; of the third and
fourth, and so on are modeled using pair-copula. I.e., if we assume the order 1, . . . , d we
can model the pair (1, 2), (2, 3), (3, 4),etc. In the second tree, conditional dependencies
of the first and third given the second variable (the pair (1, 3 | 2)), the second and fourth
given the third (the pair (2, 4 | 3)), and so on are modeled. The pair dependencies of
variables are modeled in the same way in subsequent trees conditioned on those variables
which lie between the variables in the first tree, e.g. the. pair (1, 5 | 2, 3, 4).

Generally, for regular vine with dimension d, there are d-1 pairs at level 1 (they
satisfy the condition that the graph formed with edges based on the pairs has no cycle),
d − 2 pairs in level 2 etc. and each pair has at least one element in common. For
k = 2, . . . , d− 1, there are d-k pairs in level k. For other conditions of regular vine tree
construction, see Bedford and Cooke (2001); Bedford and Cooke (2002).

3 Methodology

3.1 Copula Estimation

There are two popular parametric estimation methods available for copula estimation,
the full maximum likelihood (FML) and the inference function for margin (IFM). The
first method simultaneously estimates all the parameters of the marginal distributions
and the copula using full maximum likelihood (FML). However in some situation, the
maximum likelihood estimation may be difficult to obtain as both the marginal and
copula parameters must be estimated jointly. Therefore, numerical methods have to be
adopted to solve the optimization problem, which slows down computation and often
leading to convergence difficulties. Due to the problem face by using the FML in the
curse of estimation, this paper uses the inference function for margins (IFM) method in
the dependence modeling using D-vine copula.

The IFM is a two step estimation procedure and involves the maximum likelihood
estimation of the dependence parameter given the estimated marginal distributions. In
the first step, the parameters of the marginal distributions are estimated. In the second
step the copula parameters are estimated conditioned on the previous marginal distri-
butions estimates. This method exploits an attractive feature of copula for which the
dependence structure is independent of the marginal distributions. Under regularity con-
ditions, Patton (2006) showed that the IFM estimator is consistent and asymptotically
Normal. Below is an illustrative description of the IFM approach.

We know that from Sklars Theorem, the density f of d-dimensional F with univariate
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margins f1, f2, . . . , fd can be represented as

f(x1, x2, . . . , xd) = c(F1(x1), F2(x2), . . . , Fd(xd)
d∏
i=1

fi(xi)

where

c(u1, u2, . . . , ud) =
(δC(u1, u2, . . . , ud))

(δu1δu2, . . . , δud)

is the density of the d-dimensional copula C(u1, u2, . . . , ud; ). This implies the following

decomposition of the log-likelihood function, L =
∑n

j=1 log f
(
x
(j)
1 , x

(j)
2 , . . . , x

(j)
d

)
of a

random sample of (i.i.d.) vector xj = (x
(j)
1 , x

(j)
2 , . . . , x

(j)
d ), j = 1, 2, . . . , n, with the

density f.

L =

(
Lc

dependence

)
+

( ∑d
i=1 Li

marginals

)
This decomposition reflects the IFM approach used in this paper. From the above

decomposition:

Lc =

n∑
j=1

log
(
c(F1(x

(j)
1 , F2(x

(j)
2 , . . . , Fd(xd

(j))
)

Li =

n∑
(j=1)

logfi

(
x
(j)
i

)
, i = 1, 2, . . . , d

Lc is the log-likelihood contribution from the dependence structure of the data rep-
resented by the copula C whereas, Li is the log-likelihood contribution in L from each
margin.

In modeling the marginal distributions, under stage one of the IFM, we get the esti-
mators

α̂i
IFM = argmaxαiLi(αi).

Stage two of the IFM approach is the dependence modeling, where the estimator θ̂IFM

of the copula parameter θ̂IFM is computed by maximizing the copula likelihood con-
tribution LC , with the marginal parameters αi replaced by their first-stage estimators
i.e.:

α̂i
IFM : θ̂IFM = argmaxθLC(αIFM1 , α̂2

IFM , . . . , αIFMd , θ)

The two-stage IFM estimator
(
α̂1

IFM , α̂2
IFM

, . . . , α̂d
IFM , θ̂IFM

)
solves:(

∂L1

∂α1
,
∂L2

∂α2
, . . . ,

∂Ld
∂αd

,
∂L

∂θ

)
= 0
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3.2 Modeling of Marginal Distributions

The first stage of the IFM approach discussed above is the modeling of the Marginal dis-
tribution. In this paper, the peak over threshold approach is used to model each marginal
distribution. Since EVT assumes independent and identically distributed observations,
we first filter each return series using GARCH-type models before the extreme value
analysis.

3.2.1 Fitting excess over a threshold

In fitting the excess over a threshold, the first step is to choose the threshold. In this pa-
per, we used the mean residual life plot to choose the threshold. The threshold is chosen
where the plot is approximately linear. For this, let u be the chosen threshold, X1 . . . Xn

the random variables exceeding this threshold with a distribution F ∈MDA(Hξ)), and
Yu1 . . . Yui the series of exceedances (where Yi = Xi − u). The distribution of excess
beyond u is then given by:

Fu(y) = p(X − u ≤ y | x > u) = p(Y ≥ y | X > u), y ≤ 0

and the distribution, F of the extreme observations, Xi is given by

F (u+ y) = p(X ≥ u+ y) = p(X ≥ u+ y | X > u) · p(X > u)

F (u+ y) = p(X − u ≤ y | X > u) · p(X > u)

F (u+ y) = F u(y) · F (u)

This allows us to estimate the tail of the original distribution by estimating F and Fu
seperately. According to Pickands III (1975), Balkema and De Haan (1974), for a high
threshold u,

F̄u(y) = Ḡξβ(u)(y)

F (u) can be estimated from the empirical distribution of the observations:

F̂u =
1

n

n∑
i=1

IX(i>u) =
Nu

n

Therefore

F̂ (u+ y) =
Nu

n

(
1 + ξ̂

y

β

)−1
ξ

Next, we estimate the parameters, ξ and β using MLE.

3.3 Dependence Modeling

The second stage of the IFM approach is the dependence modeling. This is done using
D-vine copula.
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3.3.1 Parameter Estimation of D-Vine Copula

Classically, parameters of statistical models are often estimated using ML techniques, but
joint maximum likelihood estimation of the D-vine copula parameter is very challenging,
as the vine decomposition involves d(d−1)

2 bivariate copulas. However, this problem can
be tackled by sequential estimation. In this paper, we adopted the algorithm presented
in Aas et al. (2009) for the numerical maximization of the log-likelihood with adequate
starting values. The starting values are obtained using sequential estimation approach.
For the D-vine copula, we used the following steps in the sequential estimation:

1. First, we reorder the variables (data sets) such that variables that are more corre-
lated are place side by side.

2. Next, we determined which pair copulas to use in the first tree. The copulas are
selected using AIC. Base on the direction of dependence (positive or negative)
between the variables as indicated by Kendalls tau values, we select candidate
copulas. The criteria are computed for all candidate copula families and the family
with the minimum AIC value is chosen for each pair.

3. We estimated the copula parameters of the first tree using uniformly transformed
data. All pair-copula parameters are estimated using MLE technique.

4. We then used the parameter estimates from the first tree and the appropriate h
(.) function to compute pseudo observations for the second tree.

5. Next, we used AIC to determine which pair copulas to use in the second tree and
then estimate the pair copula parameters.

6. Compute the implied observation for the third tree using the estimated copula
parameters from the second tree and the appropriate h(.) function.

7. This process continued to the last tree.

3.3.2 Parameter Estimation via Maximum Likelihood

The sequential estimates are used as starting values in the numerical maximization of
the log-likelihood The D-vine copula log-likelihood with parameter set DV is:

lDV (θDV |u) =
n∑
k=1

d−l∑
i=1

d−j∑
j=1

log[cj,j+i|(j+1),...,(j+i−1)(Fj|j+1,......(j+i−1), F(j+i)|(j+1),...,(j+i−1) |

| θ(j,j+i|(j+1),...,(j+i−1))

We next present the parameter ranges of some copulas used in the empirical analysis,
together with their tail dependencies and Kendall tau values.
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Table 1: Functions, ranges of dependent parameters, corresponding Kendall tau values
and Tail dependence

Copula Function C(u,v) Parameter Range θ

Gumbel Copula exp

(
−((− ln(u))θ + (− ln (v))θ)

1
θ

)
[1,∞)

Frank Copula −1
θ ln

(
1 + ( e

θu−1)(e−θv−1)
e−θ−1

)
(−∞,∞) | {0}

Joe Copula 1− ((1− u)θ + (1− v)θ − (1− v)θ)
1
θ θ > 1

Clayton Copula
(
u−θ + v−θ − 1

)−1
θ θ > 0

Gaussian Copula ΦG[Φ−1(u),Φ−1(v); θ] −1 < θ < 1

Copula Kendalls tau Tail Dependence (Lower,Upper)

Gumbel Copula 1− 1
θ (0, 2− 2

1
θ )

Frank Copula 1− 4
θ + 4Di(θ)θ (0, 0)

Joe Copula 1 + 4
θ2

1∫
0

tlog(t)(1− t)2(1−θ)/θdt (0, 2− 2
1
θ )

Clayton Copula θ
θ+2 (2−

1
θ , 0)

Gaussian Copula 2
π arcsin(θ) (0,0)

In addition, we also used some rotated versions of Gumbel, Clayton and Joe copulas.
Rotation of 90 degrees and 270 degrees allows for modeling negative dependence, which
is not possible with the non-rotated versions. Table 2 contains the parameter ranges of
these rotated copulas.

Table 2: Copulas and their parameter Ranges

Rotated Copula Parameter Range

Rotated Clayton (90 and 270 degrees) (−∞, 0)

Rotated Gumbel (90 and 270 degrees) (−∞,−1)

Rotated Joe (90 and 270 degrees) (−∞,−1)
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4 Application (Empirical Analysis)

4.1 Description of Data and Preliminary Tests

To model the extreme dependence in the tails, this work considers a portfolio consisting
of three assets, which are: the Nikkei 225 (N225) more commonly called the Nikkei
Stock Average which is a stock market index for the Tokyo Stock Exchange and the
most widely quoted average of Japanese equities; the French stock market index known
as Cotation Assistée en Continu (CAC40) which is one of the main national indices
of the pan-European stock exchange and the German Stock Index which was formally
known as Deutscher Aktien index (DAX). Each series consist of the daily closing prices
of assets from 1990/3/16 to 2014/4/2, with 5913 observations in each series. The daily
returns, are calculated as:

rt = log
Pt
Pt−1

× 100

where rt is the return at time t and Pt the price at time t.

4.1.1 Histogram Normality Test and Descriptive Statistics

The normality tests and descriptive statistics for the three series are presented in figure 2.
Like most financial time series, all the three series exhibit evidence of fat tails, with the
kurtosis of each series greater than 3. The Jarque-Bera normality test further confirms
that all the three series are not normally distributed.

4.1.2 Exploratory Data Analysis (Q-Q plot)

The Quantile-Quantile (Q-Q) plot is a graphical method for comparing two probability
distributions by plotting their quantiles against each other. A concave departure from
the straight line in the Q-Q plot is an indication of a heavytailed distribution, whereas
a convex departure is an indication of a thin tail. To be precise, when comparing the
data (residuals) to the normal distribution, if the plot curve to the right, the data have
right tail which is heavier than the normal distribution and if it curves up to the left, the
data have a left tail that is heavier than the normal distribution. Figure 3 shows that
in all the three series, the standardized residuals do not follow the normal distribution.
The distribution of each residual has a tail that is heavier than that of the normal
distribution.
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Figure 1: Histogram Normality Test

Figure 2: QQ-Plots of Residuals against the Normal Distribution
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4.2 ARCH LM Test

This test is a Lagrange multiplier test for autoregressive conditional heteroskedasticity
(ARCH) in the residuals (Engle, 1982). The obs*R-squared statistic is Engles LM test
statistic and is computed as the number of observation times the R2 from the test
regression. The LM statistic is asymptotically distributed with 2 (q) under general
condition. Under the LM test, the null hypothesis of no ARCH up to order q is rejected
if TR2 is greater than the 2

q tabulated value at a given significance level.

Table 3: (G) ARCH Effect (Engels LM) Test on Residuals

Asset N225 CAC40 DAX

Selected GARCH(p,q) model GARCH(2,1) GARCH(1,2) GARCH(2,1)

TR2 0.087554 0.239079 0.157572

p-value 0.767310 0.624872 0.691402

The selected GARCH models along with the ARCH LM test statistics on the resid-
uals for the three series are presented in Table 3. The ARCH LM test confirms that
the ARCH effect has been mitigated at the 1% significance level. The residuals are now
approximately iid and therefore can be used for extreme value Analysis.

4.3 Split Sample

To explore the asymmetries normally found in financial returns, we split each residual
series into two (Lower and Upper tail). To achieve this, we selected about 25% of the
observations from the tail ends (upper and Lower) of the distributions of each series.
Samples selected from the upper tail end of the distributions are referred to as upper
tails and those selected from the lower tail ends are referred to as lower tails. This is just
a split sample, the actual determination of extreme observations for each of these split
samples is done using the peak over threshold approach under extreme value theory. We
call the split samples lower and upper tails because, the observations included in each
sample are selected from the tails of each distribution. The signs of the residuals for the
lower tails in each series are change to positive values. One thousand four hundred and
seventy eight (1478) observations are included in each split sample. These split samples
are then used in the empirical analysis.

4.4 Threshold Determination

Threshold Determination: We used the mean residual life plots to determine the thresh-
old. The mean residual life plot involves plotting the threshold (u) against the mean
excess for range of values of the threshold. The plot should be linear above the threshold
at which the GPD model becomes valid. McNeil et al. (2015) show that for a sample
size of 1,000 fixing the number of threshold exceedance to 100 yields good estimate of
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Value-at-Risk (VaR) and Expected Shortfall (ES). We therefore, choose the threshold
such that about 10% of the observations are included in each tail. Figure 3 shows the
mean residual life plots for each tail.

Figure 3: Mean Residual life Plots

Table 4 shows the selected threshold values together with the number of exceedances
for each threshold and their corresponding sample quantiles. The MLE estimates of the
shape and scale parameters together with their standard errors are also presented in this
table. We can see that apart from N225 lower tail with a shape parameter of 0.05249
which is not significantly different from zero, all the other shape parameters are greater
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than zero (i.e.ξ > 0). Precisely, all the shape parameters are positive which means that
the GPD is equivalent to the Pareto distribution.

Table 4: Maximum Likelihood Parameter Estimation

UPPER TAIL CAC40 DAX N225

No. of Obs. 1478 1478 1478

U 0.54 1.4 1.2

Proportion Of Exceedances— 0.1084 0.1057 0.1023

Scale (β) 0.3884 0.4602 0.2448

(Se) 0.04327 0.04864 0.03511

Shape (ξ) 0.2081 0.1314 0.4572

(se) 0.08022 0.06980 0.12380

LOWER TAIL CAC40 DAX N225

No. of Obs. 1478 1478 1478

U 0.1016 0.9 1.22

Exceedances 150 152 159

Proportion of Exceedances 0.1016 0.103 0.108

Scale (β) 0.3453 0.4279 0.59899

(se) 0.04914 0.04598 0.0836

Shape(ξ) 0.3056 0.1744 0.05249

(se) 0.11920 0.07187 0.1012
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where uDL = DAX Lower Tail, uNU = N225 Upper Tail, uCL = CAC 40 Lower Tail,
uDU = DAX Upper Tail, uNL = N225 Lower Tail and Fam5 = Frank Copula, Fam26 =
Rotated Joe Copula (90 degrees), Fam4 = Gumbel Copula, Fam13 = Rotated Clayton
Copula (180 degrees: survival Clayton), Fam34 = Rotated Gumbel Copula (270 degrees),
Fam3 = Clayton copula, Fam36 = rotated Joe copula (270 degrees).

5 Results and Discussion

From Table 5, we can see that both positive and negative dependence exist between
the pairs of tails. Positive dependence between two tails, say lower tail (losses) and
upper tail (gain) implies that an increase in the losses of one asset is associated with
an equivalent increase in the gain of the other asset. As a result, the contribution of
the two assets to the expected value of the portfolio is negligible. For example in tree
1, the dependence between DAX upper tail and CAC40 lower tail is positive (Par=
0.49112032). This dependence parameter is estimated using Fam 5, which is the Frank
copula. This copula takes values from −∞ to ∞ (more precisely,(−∞,∞) | {0}). A
zero value implies independence. Similarly in this same tree, the dependence between
CAC40 upper tail (uCU ) and DAX upper tail (uDU ) is positive (i.e., par = 1.876682).This
particular dependence parameter is estimated using Fam4 which is the Gumbel copula.
Gumbel copula takes values from 1 to infinity (i.e., [1,∞)), whereas a value of 1 implies
independence. When the estimated parameter is above one, the two tails are somehow
dependent.

In trees 2, 3, 4 and 5, some of the conditional dependence parameters are estimated
using rotated copulas. For example, in the second tree, conditioned on CAC40 upper
tail (uCU ) the dependence between DAX lower tail (uDL) and DAX upper tail (uDU )
is negative (Par = −1.891191). This dependence parameter is estimated using Fam26
which is the rotated Joe Copula (90 degrees) which takes vales from −∞ to −1 . The
more negative the dependence parameter, the greater the strength of the negative de-
pendence. Also, in tree 3 conditioned on CAC40 upper tail (uCU ) and DAX upper tail
(uDU ), the dependence between DAX lower tail (uDL) and CAC40 lower tail (uCL) which
has been estimated using Fam36, that is the rotated Joe copula (270 degrees) turns out
to be negative. This copula takes values from −∞ to −1 (i.e., θε(−∞.− 1)). As the
copula parameter, θ approaches (−∞) the copula attains the Fre chet-Hoeffding lower
bound, which corresponds to perfect negative dependence and as θ → −1 the two tails
become independent. The estimated parameter (−1.490849) shows that the two tails
are negatively dependent.

Finally, in the last tree, conditioned on CAC40 upper tail (uCU , DAX upper tail (uDU ),
CAC40 lower tail (uCL) and N225 upper tail, the dependence between DAX lower tail
(uDL) and N225 lower tail (uNL) estimated using Fam3, which is the Clayton copula,
is positive,. This copula only measures positive dependence and takes values from 0 to
∞ (i.e.,θε(0,∞). As θ goes to zero, the two tails become independent. The estimated
dependence parameter (Par = 0.0001458298) in tree 5 shows that with all the other
assets in the portfolio, the dependence between DAX lower tail and N225 lower tail is
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very weak.

6 Conclusion

As the purpose of this work is to explore the dependence between the lower and upper
tails of 3 assets in a portfolio using EVT and D-vine, the above empirical evidence
shows that both positive and negative dependence exist between pairs of tails for both
conditional and unconditional pairs. Bivariate copulas are used as building blocks in
modeling the dependence using D-vine. Depending on the type (positive or negative) of
dependence, different types of bivariate copulas were used to estimate the dependence
parameters. Some estimated dependence parameters between upper and lower tails of
two different assets in the portfolio are positive, showing that an extreme gain in one
asset is associated with an extreme loss in another asset. The estimated dependence
parameters further point out that there exist some forms of dependence between the
lower and upper tails of the assets contained in the portfolio that worth taking into
account for good management practice. Base on this investigation, our recommendation
to managers and investors is to pay greater attention to the extreme dependence in the
lower and upper tails (extreme losses and extreme gains) while mixing assets in the
portfolio, to avoid the risk of extreme losses whiles chasing extreme gains.
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