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Clustering is an extremely important task in a wide variety of application
domains especially in management and social science research. Usually, clus-
tering methods work based on some distance metric among the observation
or it may use Co-variance and correlation structure among the variables. If
all the given variables depend on a single variable, then the procedure of
clustering the observations is said to be regression clustering. In this paper,
an iterative procedure of regression clustering method was proposed by us-
ing the famous Cook’s D distance. At first, the Cook’s D distance should
be calculated for the entire sample, then fix a Cut-off distance proposed by
(Bollen and Jackman, 1990) as 4/(n−K − 1).The authors fixed this Cut-off
point as structural break in the sample, observations above the cut-off are
considered as Influential which are grouped as Influential cluster and repeat
the same procedure for the remaining observations, until there are no in-
fluential observations in the last cluster. At each iteration, Chow’s F-test
(1960) was used to check the discrimination between the influential cluster
and the non-influential cluster. Moreover, control charts also used to graphi-
cally visualizes the iterations and the clustering process .Finally Chow’s test
of equality of several regression equation helps firmly to establish the cluster
discrimination and validity. This paper employed this procedure for cluster-
ing 220 customers of a famous four-wheeler in India based on 19 different
attributes of the four wheeler and its company.
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1 Introduction

The regression quality cannot be converted into any kind of distance measure between
the elements of the data set, though such a measure is necessary for classical clustering
algorithms (Duran and Odell, 1974). Clustering is a regression of individual outcomes
on explanatory variables of which some are observed on a more aggregate level (Moul-
ton, 1986) ,Moulton (1990) . As in the general setting of model-based clustering, there
are also two different approaches for regression clustering in the literature. One is the
random partition regression clustering. The discussion can be found in (DeSarbo and
Cron, 1988), Quandt and Ramsey (1978) among others. Another one is the fixed parti-
tion regression clustering discussed in (Bock, 1969) (Bock, 1996) (Späth, 1979) (Späth,
1982). Multiple Linear Regression model relaxes the homoscedasticity assumption and
allows the error terms to be heteroscedastic and correlated within groups are so-called
clusters. (Späth, 1979). Besides the regression clustering approach, many clustering
methodologies exist in the literature such as outlier clustering and some authors may
apply clustering as a method to identify the outliers.Outliers are the set of objects that
are considerably dissimilar from the remainder of the data (Jiawei and Kamber, 2001).
Outlier detection is an extremely important problem with a direct application in a wide
variety of application domains, including fraud detection (Bolton and Hand, 2002), iden-
tifying computer network intrusions and bottlenecks (Lane and Brodley, 1999), criminal
activities in e-commerce and detecting suspicious activities (Chiu and Fu, 2003). Differ-
ent approaches have been proposed to detect outliers, and a good survey can be found
in (Knox and Ng, 1998) (Knorr et al., 2000) (Hodge and Austin, 2004).Clustering is a
popular technique used to group similar data points or objects in groups or clusters (Jain
and Dubes, 1988) and it is an important tool for outlier analysis. Several clustering-
based outlier detection techniques have been developed. Most of these techniques rely
on the key assumption that normal objects belong to large and dense clusters, while
outliers form very small clusters (Loureiro et al., 2004) (Niu et al., 2007).It has been
argued by many researchers whether clustering algorithms are an appropriate choice for
outlier detection. For example, in (Zhang and Wang, 2006), the authors reported that
clustering algorithms should not be considered as outlier detection methods. This might
be true for some of the clustering algorithms, such as the k-means clustering algorithm
(MacQueen et al., 1967). This is because the Cluster means produced by the k-means
algorithm is sensitive to noise and outliers (Van der Laan et al., 2003).Similarly, that the
case is different for the Partitioning Around Medoids (PAM) algorithm Kaufman and
Rousseeuw (1990). PAM attempts to determine k partitions for n objects. The algo-
rithm uses the most centrally located object in a cluster (called medoid) instead of the
cluster mean. PAM is more robust than the k-means algorithm in the presence of noise
and outliers. This is because the medoids produced by PAM are robust representations
of the cluster centers and are less influenced by outliers and other extreme values than
the means (Van der Laan et al., 2003) Kaufman and Rousseeuw (1990) (Dudoit and
Fridlyand, 2002). Furthermore, PAM is a data-order independent algorithm (Hodge and
Austin, 2004), and it was shown in (Bradley et al., 1999) that the medoids produced by
PAM provide better class separation than the means produced by the k-means cluster-
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ing algorithm. PAM starts by selecting an initial set of medoids (cluster centers) and
iteratively replaces each one of the selected medoids by one of the none-selected medoids
in the data set as long as the sum of dissimilarities of the objects to their closest medoids
is improved. The process is iterated until the criterion function converges. These ap-
proaches can be easily implemented which includes the PAM, such as (Kaufman and
Rousseeuw, 1990) (Ng and Han, 2002) (Zhang and Couloigner, 2005).

As discussed in (Loureiro et al., 2004) (Niu et al., 2007) (Zhang and Wang, 2006), there
is no single universally applicable or generic outlier detection approach. Therefore,many
approaches have been proposed to detect outliers. These approaches can be classified
into four major categories based on the techniques used (Zhang and Wang, 2006), which
are: distribution-based, distance-based, density-based and clustering-based approaches.
Distribution-based approaches (Hawkins, 1980) (Barnett and Lewis, 1994) (Rousseeuw
and Leroy, 2005) develop statistical models (typically for the normal behavior) from
the given data and then apply a statistical test to determine if an object belongs to
this model or not. Objects that have low probability to belong to the statistical model
are declared as outliers. However, Distribution-based approaches cannot be applied in
multidimensional scenarios because they are univariate in nature. In addition, a prior
knowledge of the data distribution is required, making the distribution-based approaches
difficult to be used in practical applications (Zhang and Wang, 2006).In the distance-
based approach (Knox and Ng, 1998) (Knox and Ng, 1998) (Ramaswamy et al., 2000)
(Angiulli and Pizzuti, 2005), outliers are detected as follows. Given a distance measure
on a feature space, a point q in a data set is an outlier with respect to the parameters
M and d, if there are less than M points within the distance d from q, where the
values of M and d are decided by the user. The problem with this approach is that
it is difficult to determine the values of M and d. Density-based approaches (Breunig
et al., 2000)(Papadimitriou et al., 2003) compute the density of regions in the data
and declare the objects in low dense regions as outliers. In (Breunig et al., 2000),
the authors assign an outlier score to any given data point, known as Local Outlier
Factor (LOF), depending on its distance from its local neighborhood. A similar work
is reported in (Papadimitriou et al., 2003).Clustering-based approaches (Loureiro et al.,
2004) (Loureiro et al., 2004) (Gath and Geva, 1989) (Van Cutsem and Gath, 1993) (Jiang
et al., 2001) (Acuna and Rodriguez, 2004), consider clusters of small sizes as clustered
outliers. In these approaches, small clusters (i.e., clusters containing significantly less
points than other clusters) are considered outliers. The advantage of the clustering-
based approaches is that they do not have to be supervised. Moreover, clustering-based
techniques are capable of being used in an incremental mode (i.e., after learning the
clusters, new points can be inserted into the system and tested for outliers). (Van Cutsem
and Gath, 1993) present a method based on fuzzy clustering. In order to test the absence
or presence of outliers, two hypotheses are used. However, the hypotheses do not account
for the possibility of multiple clusters of outliers. (Jiang et al., 2001) presented a two-
phase method to detect outliers. In the first phase, the authors proposed a modified
k-means algorithmto cluster the data, and then, in the second phase, an Outlier-Finding
Process (OFP) is proposed. The small clusters are selected and regarded as outliers
by using minimum spanning trees. In (Loureiro et al., 2004) clustering methods have
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been applied. The key idea is to use the size of the resulting clusters as indicators of
the presence of outliers. The authors use a hierarchical clustering technique. A similar
approach was reported in (Almeida et al., 2007). (Acuna and Rodriguez, 2004) performed
the PAM algorithm followed by the technique (henceforth, the method will be termed
PAMST). The separation of a cluster A is defined as the smallest dissimilarity between
two objects; one belongs to Cluster A and the other does not. If the separation is large
enough, then all objects that belong to that cluster are considered outliers. In order
to detect the clustered outliers, one must vary the number k of clusters until obtaining
clusters of small size and with a large separation from other clusters. In (Yoon et al.,
2007), the authors proposed a clustering- based approach to detect outliers. The K -
means clustering algorithm is used. As mentioned in (Lane and Brodley, 1999)(Laan,
2003), the k-means is sensitive to outliers, and hence may not give accurate results.
Later,Jayakumar and Thomas (2013) proposed a new approach of clustering the sample
observation based on multivariate outlier detection by using the T-square distance. In
this paper, a new method of regression clustering was proposed based on Cook’s D
distance and it is discussed in the subsequent sections.

2 Proposed Approach

Here, we proposed a new approach of regression clustering based on Cooks distance. In
statistics, Cooks distance is a measure introduced by Cook, R.Dennis, and it is a measure
of change in the regression co-efficients that would occur if an observation was omitted,
thus revealing which observations are the most influential in affecting the regression
equation. It is affected by both the case being an outlier on Y-space and on the set
of the predictors in X-space. Data points with large residuals (outliers) and/or high
leverage may distort the outcome and accuracy of a regression. Points with a large
Cook’s distance are considered to merit closer examination in the analysis. Formally,
the cooks D is defined as

Di =
(β̂ − β̂(−i))

T
(XTX)(β̂ − β̂(−i))

(p+ 1)σ̂2e
(1)

From (1) where β̂(−i) is the vector of estimated regression co-effcients with the ith

observation deleted, p is the no.of predictors and σ̂2e is the estimated error variance for
the full dataset. Removing the ith observation should keep β̂(−i) close to β̂ , unless the ith

observation is an influential observation. Based on the above said distance measure, first,
calculate the Cook’s distance from (1) by fitting a multiple linear regression model using
OLS for the n observations based on p independent variables, where β̂. Secondly, fix a
cut-off distance by using (Bollen and Jackman, 1990) 4/(n−K − 1), observations above
the cut-off are considered as Influential cluster and named as Influential cluster-1.Repeat
the same procedure for remaining observations excluding the Influential observations in
cluster-1. Repeat the process, until there are no influential observations in the last
cluster. The basic structure of the proposed method is as follows:
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Step1-Calculate the Cook’s distance from (1) by fitting a multiple regression model
for n observations based on p independent variables.

Step2-Identify the observations which are above the cut-off distance and consider
those observations belong to Influential cluster-1.
Step3-Again fit a multiple regression model for Influential cluster 1 and for the re-

maining sample size. Check the equality of two regression equations by using chow’s
F-test.If two regression equations are equal, then stop the iteration and it shows there
is no discrimination between the influential cluster-1 and the remaining sample size. If
the regression equations are not equal at 5% or 1% significance level, then the influential
cluster-1 is different from the remaining sample size, then continues step.4
Step4-Repeat step no.1 and 2 for the remaining observations and ascertain the Influ-

ential cluster- 2.
Step5-Continue the iteration process, until there is no influential observations in the

remaining sample size.
Step6- If ‘r’ clusters are explored, and then scrutinize the overall discriminant validity

among the clusters by fitting ‘r’ multiple regression equations.
Step7-Then apply Chow’s F-test for checking the equality of several regression equa-

tions and if the regression equations are equal, there is no discrimination among the
clusters. Similarly, if the regression equations are not equal at 5% or 1% significance
level, then each cluster is different among each other and this shows we achieved the
discriminant validity among the clusters.

The discriminant validity among “r” clusters (includes ‘(r-1)’Influential cluster and a
Non-influential cluster) through the regression clustering approach and the application
of Chow’s F-test explores many interesting facts of the structural break in survey data.
This will be discussed in the next section.

3 Chow Test and Cluster Validation

In survey data also, there often contains a structural break, due to the cluster effect or
group effect of the similar observations. In order to test a structural break, we often use
the Chow test, and it uses an F-test to determine whether a single regression is more
efficient than two or more separate regressions involving splitting the data into several
clusters. In multiple linear regression analysis, the structural break could occur at a
known point Z.The point Z breaks the given sample into influential cluster and non-
influential cluster. Based on the previous section, the authors adopted cut-off Cook’s D
as 4/(n − K − 1) proposed by (Bollen and Jackman, 1990) as breaking point (Z) and
it helps to segregate the influential observations as influential cluster and the remaining
observations are non-influential. In multiple linear regression analysis, if we have just a
single regression equation to fit the data points, it can be expressed as

Y = Xβ + e (2)

In the second case, where there is a structural break at Z, we have two separate models,
expressed as:
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Influential cluster regression equation

−Y1 = X1β1 + e1 (3)

Non-Influential cluster regression equation

−Y2 = X2β2 + e2 (4)

This suggests that (3) applies for the observations above the break at Z, then (4)
applies for the observations below the structural break at Z .If the parameters in the
above same, i.e. β1 = β2, then models from (3) and (4) can be expressed as a single model
as in (2), where there is a single regression. The Chow test basically tests whether the
single regression or the two separate regressions fit the data best. The stages in running
the Chow test are:

1. At first, run the regression using all the observation without the structural break
and calculate the SSE (ê′ê). 2. Run two separate regressions on the observations, one
for the influential cluster and another for the non-influential cluster, then collecting the
SSE in both cases, giving SSE1 (ê1

′ê1)and SSE2 (ê2
′ê2) 3. Using these three values,

calculate the test statistic from the following formula:

F =

(
ê′ê− (ê1

′ê1 + ê2
′ê2)
)
/K(

ê1
′ê1 + ê2

′ê2
)
/n− 2K

∼ F (K,n− 2K)

Where K is the estimated no.of parameters.

4. Find the critical values in the F- tables; in this case it has F (K,n− 2K)degrees of
freedom. If the test result is statistically significant at 5% or 1% level, then reject the
null hypothesis (β1 = β2) and conclude that the sample of observations having structural
break. The acceptance of alternative hypothesis (β1 6= β2)under chow’s F-test helps us
to drawn the discriminant validity between the Influential regression cluster and the
non-influential regression cluster.

5. The overall discriminant validity among the Influential clusters can be tested if
there ‘r’clusters in the sample, then we have to use the same Chow’s F-test under the
null hypothesis (β1 = β2 = β3 = β4 = ..... = βr+1 = βr)the test statistic is given as

F =

(
ê′ê−

r∑
j=1

êj
′êj

)
/K(

r∑
j=1

êj
′êj

)
/n− rK

∼ F (k, n− rK)

Where K is the estimated no.of parameters and ‘r’ is the no.of clusters. If the test
result is statistically significant at 5% or 1% level, then accept the alternative hypothesis
(β1 6= β2 6= β3 6= β4 6= ..... 6= βr+1 6= βr)and this shows the clusters are distinctive among
each other and we achieve the overall discriminant validity.
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4 Results and Discussion

In this section, we investigated the effectiveness of our proposed approach on the survey
data collected from the famous four wheeler users’ in India .The data comprised of 19
different attributes about the four wheeler company and the data was collected from 220
four wheeler users. A well-structured questionnaire was prepared and distributed to 240
four wheeler customers and the questions were anchored at five point likert scale from
1 to 5.After the data collection is over, only 220 completed questionnaires were used for
analysis. The aim of this article is to describe the proposed clustering approach not the
application of the theoretical concept. The following table shows the results extracted
from the analysis by using SAS JMP V10 and IBM SPSS V22.

Table 1: Iteration Summary for Identification of Influential clusters

Iteration Cut-off
Cook’s D
4/(n−K −
1)

Pooled
Sample

Observations
< Cut-off
Cook’s D

Observations
> Cut-off
Cook’s D

Influential
cluster
size

Chow’s F test

(n) ê
′
ê (n1) ê1

′
ê1 (n2) ê2

′
ê2 F-

ratio
d.f

(K,n-
2K)

1 0.0199 220 21.7215 196 4.93543 24 1.68965 24 21.827* (19,182)

2 0.0226 196 4.93543 177 1.28598 19 0 19 23.599* (19,158)

3 0.0253 177 1.28598 155 .09959 22 .28512 22 17.138* (19,139)

4 0.03448 155 0 - - - - - - -

K (no. of estimated parameters) =19 *p-value <0.01 d.f- degrees of free-
dom

Table-1 visualizes the iteration summary of the identification of the influential clus-
ters by using the Cook’s D distance. At first iteration, 220 observations, a dependent
and 18 independent variables were used to fit a linear multiple regression model and
calculate the Cook’s D distance for all observation. Among 220 observations, the Cook’s
D for 196 observations were below the Cut-off D (0.0199) and the remaining no. of
observations (24) are above the cut-off.Therefore, we consider the 24 observations as
Influential cluster-1.The result of the Chow’s F-test in this iteration is also significant
at 1% level and this shows there is some discrimination between the influential cluster-1
and the remaining non-influential observation. Then repeat the iteration process to the
next stage by fitting a linear multiple regression model and calculate the Cook’s D dis-
tance based on 196 observations (220-24) for the same variables in iteration 2.Likewise,
if we continue the iteration process for the remaining stages, the iteration reached the
limit in the 4th step with 155 observations as non-influential cluster. At the iteration
no.4, the result of the linear multiple regression model for 155 observations reveals the
sum of the squared error is 0, and then it is impossible to calculate the Cook’s D, So
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stop the iteration process. Hence based on 4 iterations, we identified three different
Influential cluster at 1% significance level with (n=24), (n=19), (n=22) and (n=155)
observations as non-influential cluster respectively. The iteration and identification of
influential clusters were explained with the help of the following control charts.
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Figure 1: Transition in model selection at 50% Inflation level of error variance
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Table 2: Iteration Summary for Identification of Influential clusters

Chow’s
F test

Pooled
Sample

Influential
cluster-1

Influential
cluster-2

Influential
cluster-3 Non

Influential
cluster

F-
ratio

d.f

(K,n-
2K)

(n) ê
′
ê (n1) ê1

′
ê1 (n2) ê2

′
ê2 (n3) ê3

′
ê3 (n4) ê4

′
ê4

220 21.7215 24 1.6896 19 0 22 .2851 155 0 75.785* (19,182)

K (no. of estimated parameters) =19 *p-value <0.01 d.f- degrees of free-
dom

Table-2 describes the results of the Chow’s F-statistic of several clusters which helps us
to finalize the discriminant validity among the influential clusters. The result of the test
statistic confirms that the fitted multiple regression equation based on each cluster are
significantly different among the influential clusters at 1% significant level. This show the
clusters are different in the regression plane and we achieved the overall discriminant
validity among the clusters. The following 2-D and 3-D surface plot visualizes the
summary of membership of each observation in influential cluster as well as in non-
influential cluster based on Cook’s D.



Electronic Journal of Applied Statistical Analysis 23

Figure 2: Membership of observations in influential and Non-influential clusters
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Figure 3: Membership of observations in influential and Non-influential clusters based
on Cook’s D
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5 Conclusion

In this paper a new method of regression clustering was proposed based on influential
observations. Though several regression clustering procedures available in the literature,
the proposed technique gives a unique idea to cluster the sample observations in a survey
study based on the influential observations. The feature of the proposed clustering
technique was elaborately discussed and the authors also highlighted the application of
the technique in a survey research. Based on the results derived, the proposed technique
gives more insights to the researcher to cluster the sample observation and introduce the
concept of structural break in survey data due to the cluster effect or group effect of the
similar observations. Finally the authors enlighten an idea for further research by using
step-wise regression procedure to identify the influential clusters with different sub-sets
of independent variables and this issue will raise a new exploration of hybrid chow test
which can used to test the equality of several regression equations with different sub-set
of regressors.
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