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Functional t-tests involve testing for differences in functional means across
two curve groups. If a significant overall difference in the mean curves is
detected, one way to identify the location of these differences is pointwise
testing. Ramsay and Silverman (2005) suggest using a pointwise test ap-
proach based on a permutation method and Cox and Lee (2008) based on
Westfall-Young approach. Since both of them have their caveats, here it is
suggested to use them simultaneously to improve the validation of results. It
is concluded that they strongly support each other. The flexibility of func-
tional data analysis is shown by using basis functions comparatively and the
irregular behavior of the differences or mean functions across the years are
presented via rainbow plots explicitly. Meteorological data like humidity is
used for these aims. Functional t-tests are used in order to observe if humid-
ity mean functions of coastal area and hinterland of Turkey are statistically
different. On the other hand, analysis for eleven years (2000-2010) is made
in order to observe if these expectations changes in years. Suggested usage
of the tests is proven to be practically useful.

keywords: Functional data analysis, functional t-tests, Fourier series, me-
teorological data, rainbow plots.

1 Introduction

Thanks to the development in technology, the increase in data storage and processing
capacities of computers allows storage and analysis of big data, collecting many points
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on each subject. As an observed intensity in a specific point occurs, it is assumed that
the data are in fact sampled from an underlying smooth function. Discussing data
as smooth functions caused development of new statistical methods as alternatives to
classical statistical methods under the name of Functional Data Analysis. The term
”Functional Data Analysis” is firstly defined by Ramsay and Dalzell (1991). The basic
philosophy of functional data analysis is approaching observed data functions not as a
line of consecutive individual observations, but as unique inputs. In other words, a curve
or function is used as the basis unit in data analysis. At the same time, data are often
assumed to be a function of time, but this is not a must. As data are made of functions,
being able to examine them visually is informative about the structure of data besides
appropriate statistical analyses. For this reason, graphical displays are used often in the
analysis and interpretation of functional data.

There are many studies in the literature about functional data analysis. Most of these
studies are based on the functional expansion of statistical and multivariate statistical
methods such as principal components analysis (Besse and Ramsay, 1986, Barra, 2004,
Benko, 2004, Lober and Villa, 2004, Ingrassia and Costanzo, 2005, Hall and Nasab, 2006,
Keser, 2010), canonical correlation analysis (Leurgans et al., 1993, He et al., 2000, He
et al., 2003, He et al., 2004, Kupresanin, 2008), cluster analysis (Cerioli et al., 2005),
regression analysis (Ratcliffe et al., 2002, Chiou and Müller, 2007, Ainsworth et al.,
2011) and generalized linear models (James, 2002). Besides that, studies on hypothesis
tests such as functional t-tests and functional analysis of variance (Cuevas et al., 2004,
Shen and Faraway, 2004, Hall and Keilegom, 2007, Cox and Lee, 2008, Kaziska, 2011,
Vsevolozhskaya et al., 2013), which are used for testing the equality of two or more
mean functions, have started to increase in recent years. All of these methods have been
applied on a wide range of areas including the analysis of medical and environmental
data, meteorological, financial, econometric and psychological data. On the other hand,
Ullah and Finch (2013) provide a detailed literature review about the functional data
analysis’ field of application especially after 2005.

The goal of this study is to show the usefulness of functional data analysis on real data
when classical statistical methods are insufficient. Meteorological data like humidity are
used for this aim. It is expected that the effects of geographical location and landform of
an area on humidity curve are revealed through functional data analysis. For this aim,
Turkey, which has a variable geographical structure and landform, is investigated. The
rough terrain, location and position of mountains, seas around the land and increase
of height from west to east cause huge climate changes in short distances. Because of
these effects, temperature, humidity, and rainfall vary significantly according to regions.
Especially positions of regions according to sea, positions of mountains and elevations
have significant effect on humidity. This is why, it is expected that humidity functions
of coastal area and hinterland will behave different.

Many classical statistical methods are insufficient to test these expectations, because
the dimension of the time points (variables) will often be much larger than the sam-
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ple size. Thus most of the inferential methods from classic statistical and multivariate
analysis cannot be used directly, since they require inversion of the sample covariance
matrix. The functional data analysis methods overcome this issue.

In this study, in order to observe if humidity mean functions of coastal area and hin-
terland are statistically different and where the differences occur, the pointwise tests
proposed by Ramsay and Silverman (2005) and Cox and Lee (2008) are used simulta-
neously. The pointwise approaches used by Ramsay and Silverman (2005) and Cox and
Lee (2008) can be considered as follow-up tests to an overall test and both techniques
have their caveats. Ramsay and Silverman fail to account for multiplicity issue while
performing tests across the evaluation (here time) points. Cox and Lee account for
multiplicity but their method cannot assess overall significance (Vsevolozhskaya et al.,
2013). Thus in this study it is proposed to use the two methods together to improve the
validity of results.

On the other hand, analysis for ten years is made in order to observe if these expecta-
tions changes in years. Monthly analyses (e.g. August) are also conducted for the regions
with big difference. Besides, Fourier and B-Spline basis approaches are compared. Rain-
bow plots, which are one of the graphical presentations, are used to interpret changes in
years. Additionally, functional t-test results for 11 years are presented graphically and
interpreted.

This paper is organized as follows. In 2, basis function approach for the transforma-
tion of data observed in discrete points into functional data is introduced. t-tests for
comparing means by using permutation tests and Westfall-Young approach for multi-
plicity are conducted. In 3, individual and mean humidity curves of coastal areas and
hinterlands for 35 cities in Turkey for 2010 will be compared in order to observe the
effects of geographic location and landform on humidity. The utilization of Fourier and
B-Spline basis functions are compared meanwhile. Pointwise methods are used in order
to analyze if there are statistical differences among them, where this differences are most
dense, and results of the analyses are interpreted statistically and visually. On the other
hand, in order to observe if there is a change in humidity structures between 2000 and
2010, mean functions of coastal areas and hinterlands are observed with rainbow plots
and functional t-test results are visually presented and summarized. 4 concludes the
study and gives further insights.

2 Statistical Methods: Functional Data Analysis

2.1 Basis Function Approach

Flexible methods are needed while estimating functions from the original discrete obser-
vations yi.

yi = x(ti) + εi (1)
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A system made of K number of basis functions are chosen for this. The desired x(t)
function can be expressed as

x(t) =

K∑
i=1

ciBi(t), i = 1, 2, . . . ,K (2)

as a weighted sum of these basis functions. Here, Bi(t) is the i-th basis function and
ci is the corresponding coefficient. ci coefficients determine the shape and form of the
function and can be interpreted as parameters. The method of estimating x(t) as a
weighted sum of K basis functions is referred to as Basis Function Approach.

Various basis functions can be used such as B-Splines, polynomials, wavelets and
Fourier basis according to the structure of data. Many functions need to repeat itself
along a period T . Among the basis functions, Fourier basis function is the most appro-
priate one for long time periodical data because of its sinusoidal structure, e.g. 11 years.
Fourier series are used to model periodical functions and can be useful for periodical
data which has a known and fixed period. For w = 2π

T and the period (T ), for a fixed
frequency of w, basis can be written as 1, sin(wt), cos(wt), sin(2wt), cos(2wt), . . .. In
other words, after the first fixed basis function, Fourier basis functions are arranged as
successive sine/cosine pairs. Functions that are obtained through linear combination of
Fourier basis are infinitely differentiable.

B-Spline j with a degree d and order m can be given with a recursive relation as in
(3)

Bj,d(t) =
t− tj

tj+d − tj
Bj,d−1(t) +

tj+1+d − t
tj+1+d − tj+1

Bj+1,d−1(t) (3)

Generally the knots t are taken as evaluation points. A B-Spline in the form of Bj,d(t)

depends only on knots (tk)
j+d+1
k=j and the number of basis functions is calculated as

number of basis functions = number of knots + order− 2 (4)

In this study Fourier basis and B-Spline basis are used comparatively to indicate the
flexibility of functional data analysis. Since in Fourier basis approach the number of basis
functions can be lower than the number of evaluation points, the data can be smoothed
with least squares method; so, individual humidity curves that are smooth and infinitely
differentiable can be obtained. In B-Spline approach penalized least squares is used to
estimate the ci coefficients.

2.2 Functional t-Test

Functional data analysis gives opportunity to compare curve groups statistically besides
revealing the variability and relations in data structures. Functional t-tests and func-
tional analysis of variance are the functional expansions of classical statistical tests such
as t-tests and analysis of variance. Development of statistical tests in functional data is
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still a vivid area of research.

Just as with ordinary analysis of variance and t-tests, after deciding that the means
from two or more samples are significantly different by an overall testing method, one
wants to identify more specifically where the differences are. In the functional analysis of
variance and functional t test settings, a natural goal is to determine the specific region
of t where the differences occur Cox and Lee (2008).

For this problem we can use pointwise testing procedures. Ramsay and Silverman
(2005) and Ramsay et al. (2009) propose a pointwise testing procedure based on a per-
mutation method and Cox and Lee (2008) based on a randomization method due to
Westfall and Young (1993). Because there are some lacks of both methods we suggest
using them simultaneously to improve the validity of results. Both can be used as a fol-
low up test to an overall test to determine the specific region of t where the differences
occur. These methods are explained respectively in 2.2.1 and 2.2.2.

In order to test if mean curves of two groups are statistically different, it is assumed
that we have two curve groups which are observed in the same time point but may have
different number of individual curves.

In other words, x11(t), x12(t), . . . , x1n1(t) and x21(t), x22(t), . . . , x2n2(t) are assumed to
be random samplings that are chosen respectively from x1(t) and x2(t) on the same time
points t. In order to test if there is a difference between mean curves of two groups , in
other words, to compare the means of the two curve groups over time, hypothesis are
assumed to be as follows:

H0 : µ1(t) = µ2(t) for all t ∈ T, H1 : µ1(t) 6= µ2(t) for at least one t ∈ T (5)

In both approach firstly test statistic T is used.

T (t) =
|x1(t)− x2(t)|√

1
n1
V ar(x1(t)) + 1

n2
V ar(x2(t))

(6)

It is the functional form of test statistics and x1(t) and x2(t) are the curve means:

x1(t) =
1

n1

n1∑
i=1

x1i(t), x2(t) =
1

n2

n2∑
i=1

x2i(t) (7)

V ar(x1(t)) and V ar(x2(t)) are the curve variances

V ar(x1(t)) =
1

n1 − 1

n1∑
i=1

(x1i(t)− x1(t)), V ar(x2(t)) =
1

n2 − 1

n2∑
i=1

(x2i(t)− x2(t)) (8)

for each curve group. As can be seen obviously here, test statistics T (t) is a function
of time. After the data of two populations are sampled, T (t) can be calculated and
hypothesis test can be practiced.
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2.2.1 Functional t-tests based on a permutation method

It is often impossible to derive null distribution of a test statistics. This is especially
true in functional data analysis studies in which data is highly or infinitely dimensional.
In such cases, permutation tests (or randomization) are used in order to determine the
null distribution of T (t) (Lee (2005), Ramsay et al. (2009), Coffey and Hinde (2011)).

A permutation method can be used for obtaining a null distribution for any test statis-
tic and a probability value (p value) to determine the result of the test. This method is
based on randomly changing curve labels and calculating test statistics each time. This
statistics is referred to as permuted test statistics. This process is repeated ten thousand
times in order to obtain a null distribution and it gives a reference in order to evaluate
maximum of T (t). At the same time, test statistics are also calculated from original
data. Obtained statistics is referred to as observed test statistics. A p-value is obtained
by permuted test statistics’ ratio that is higher than or equal to observed test statistics.
It is assumed that null hypotheses will be rejected for high values of test statistics (Lee,
2005, Ramsay et al., 2009, Coffey and Hinde, 2011).

This procedure is advantageous as it is distribution independent. On the other hand,
it is an exact level α test because of the features of permutation test, so, it gives valid p
values (Lee, 2005).

Functional t-test that is carried out through permutation tests used by Ramsay and
Silverman (2005) and Ramsay et al. (2009) can be summarized with these basic steps:

1. Number of time points (n) and number of permutations (d) are determined.

2. Labels of curves are mixed d times and T (t) is calculated each time for n time
points. The results are called as Tnullvalues(t) and it is an n × d dimensional
matrix.

3. Maximum differences are taken into consideration for each permutation along with
n time points. These differences create a null distribution which is represented with
Tnull(t). As a result, a column vector is obtained at the length of d.

4. For original data, (before changing labels) T (t) is calculated at n time points. This
data creates the observed curve. The biggest one of these values is Tmaxobservation(t).
(Observed curve is shown with solid blue line in Figure 4)

5. The point wise critical value is the curve formed by the quantile (Tnullvalues(t), 0.05)
over all vector permutations at each time point and it is the max value on all of the
permutations, so it is a column vector of n dimensions. (It is shown with dashed
blue line in Figure 4.)

6. Maximum value is a fixed value. This value is named as maximum critical value
and it is simply (Tnull(t), 0, 05) (It is shown with dashed red line in Figure 4.)
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7. The observed curve is compared with pointwise critical value and maximum critical
value at each time point.

8. The average time when Tmaxobservation(t) is smaller than Tnull(t) is calculated and
this is the related p value . The pvalue is as follows:

pvalue = mean[Tmaxobservation(t) < Tnull(t)] (9)

If pvalue is smaller than the desired significance level (generally as 0.05), the null
hypothesis that is given above is rejected against alternative hypothesis.

9. In order to calculate a related p value at any time, original data are compared
with Tnullvalues(t) and the mean of Tnullvalues that are bigger than the original
observations is calculated. In a way, p value for each time point is calculated as,

pt = mean[Tobservation(t) < Tnullvalues(t)] (10)

The study of Cox and Lee (2008) and Yaree (2011) are benefited from in forming these
steps. The test created this way is also called pointwise t-test.

Statistical package that is formed on the basis of these steps are created by modifying
Matlab codes of Ramsay (2013). The program can be found in author’s personal web
site Keser and Deveci (2013). Data can be smoothed to obtaining observed curve points
and pointwise critical value points in order to interpret graphics more easily. Similar to
obtaining individual functions, Fourier basis and other basis functions such as wavelets,
B-Splines or polynomials may be used for smoothing.

2.2.2 Functional t-tests based on a randomization method of Westfall and
Young

Another pointwise procedure used for comparing the mean curves and detect the regions
that the differences occur is proposed by Cox and Lee (2008).

Ramsay and Silverman (2005) and Ramsay et al. (2009) didn’t take account of the
relationship between evaluation points. But with smooth functional data, the events of
rejection of H0(ti) and H0(ti+j) are highly positively correlated when ti and ti+j are
close. Thus Cox and Lee (2008) suggested an approach that accounts for this correla-
tion. So they use Westfall-Young randomization method, for which Westfall (2005) notes
that it can ’account for spatiotemporal correlations as well as non-normal distributional
characteristics’. This verified for functional data by Cox and Lee (2008).

In order to avoid the multiplicity problem, the individual p-values are adjusted using
Westfall-Young method. The Westfall-Young method is a step-down resampling method.
In other words, the testing begins with the first ordered hypothesis (corresponding to the
smallest unadjusted p-values) and stop at the first non-rejection. The t-test procedure
using the Westfall Young randomization method can be summarized with these basic
steps:
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1. First, we perform the univariate t-tests (Eq.2.2) at every evaluation points (here
time points) and obtain the unadjusted p-values from original data. The unad-
justed p-values ordered from min to max (pr1 ≤ . . . ≤ prk) as in Holm (1979)’s
method.

2. Initialize counting variables Ci = 0, i = 1, 2, . . . , k

3. Randomly permute data between the two populations and call the resulting data
set as a randomized data set. The p-values computed from a randomized data set
are denoted by p∗. Put the p∗ values in the same order as the sorted p∗- values for
the original data set. Note that the sequence rj is fixed throughout the simulation.
Thus the p∗rj will not have the same monotonicity as the original p values p(j).

4. Define the successive minima
q∗k = p∗rk
q∗k−1 = min(q∗k, p

∗
rk−1

)
...
q∗1 = min(q∗2, p

∗
r1)

5. If q∗i ≤ p(i), then Ci ← Ci+1

6. Repeat Step (3-5) N times. This means randomly permute observations N times.
The adjusted p-value is computed as p̃Ni = Ci/N . So the adjusted p-value is the
proportion of q∗i less than or equal to p(i), with an additional constraint given in
Step 7.

7. Enforce monotonicity using successive maximization:
p̃N1 = p̃N1
p̃N2 ← max(p̃N1 , p̃

N
2 )

...
p̃Nk ← max(p̃Nk−1, p̃

N
k )

Once monotonicity has been enforced, the simulation based estimates pNj are rea-
sonably approximations of the actual values p̃j , provided N is sufficiently large.
N ≥ 10000 is recommended.

8. The null hypotheses are rejected when the adjusted p-values (p̃Ni ) are smaller than
the desired significance level α (generally as 0.05) p̃Ni < α . Also, this method
controls the familywise error rate (FWER), the probability of committing at least
one Type 1 error, to be less than or equal to α.

Westfall and Young (1993), Cox and Lee (2008) and Vsevolozhskaya et al. (2013)
are benefited from while forming these steps.

New approaches are developed as alternatives to pointwise t-test. Vsevolozhskaya
et al. (2013) propose an alternative procedure for identifying regions of significant



262 Keser I.K.

difference in the functional domain. Their procedure is based on a region-wise
test and application of a combining function along with the closure multiplicity
adjustment principle. Lee (2005), Zhang et al. (2010), Cheng et al. (2010) and
Coffey and Hinde (2011) can be read for functional t-test practices and alternative
approaches.

3 An Application To Humidity Data:Turkey Case

In this study, humidity differences between coastal areas and hinterland which are re-
sulted from geographical location and landform in Turkey are analyzed. The factors
that affect humidity and the effects of geographical location and landform of Turkey on
humidity are briefly introduced in this section.

3.1 Preliminary Information

Water that is evaporated from water mass on earth cause dampening in atmosphere.
Water vapor in the atmosphere is called air humidity. The amount of water vapor in the
atmosphere, which is a significant heat factor, changes according to time and place. The
basic factors that affect distribution of humidity in the atmosphere can be summarized
as evaporation, heat, altitude and pressure.

Resource of the humidity in the atmosphere is water mass on earth. Evaporation
increases in parallel with the increase in heat, lack of humidity, water surface, wind and
decrease in pressure. On the other hand, as mentioned before, dehumidification capacity
of air is high when the temperature is high, so evaporation increases; and it decreases
when temperature is low. Water vapor which is a heavy gas cannot rise very much
because of gravity. It rains as a result of condensation and as it becomes colder when it
rises, dehumidification of air and accordingly humidity decreases. Finally, descending air
movement in high pressure areas prevents evaporation, because increase in the intensity
of descending air prevents rising of water vapor. In low pressure area, rising air is less
dense; evaporation is easier 9 (2013). So, it is expected that distribution of humidity
decreases from seas to land, low area to high areas and from equator to the poles.

In line with this information, when geographic location of Turkey and its landforms are
taken into consideration, it is expected that humidity effect in coastal areas and hinter-
land differs. Turkey is situated between 36◦-42◦ North latitude, 26◦-45◦ East longitude.
According to this, Turkey is located in the temperate zone where four seasons clearly
occur. Mathematical location is not the only effective factor on climate, temperature,
rainfall and humidity. Because of the landforms, heights and seas around the country,
climate seriously differs from one region to another. Especially position of regions in
terms of seas, location of mountains in terms of seas and their heights have significant
effects on humidity. Especially coastal areas in the country have much higher humidity
ratio than the inner regions. On the other hand, North Anatolia Mountains and Toros
Mountains prevent the effects of seas from entering inner lands. The effect of seas and
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Figure 1: Turkey Map

ratio of humidity decrease from coastal areas to hinterland. Similarly, mean elevation of
Turkey is high. Elevation increases from west to east and this is why temperature falls
in east and humidity decreases in parallel with the increase in height.

3.2 Analysis and Results

In this research, the effect of geographical formations and climate on humidity is ex-
plained by comparing coastal area and hinterland humidity mean functions statistically.
In our case, it is expected that during most of the year, humidity mean curves moves
differently. Functional t-test will be used for this purpose. Year of 2010 will be analyzed
in detail and comparisons for 2000-2010 will also be presented visually and summa-
rized. Data used in the study is obtained from Head Office of Meteorology 28 (2013).
Before functional t-tests, individual humidity functions and mean functions are analyzed.

In this study, 35 cities which has complete daily mean humidity values for 2000-2010
are chosen. There are many stations and years with missing data. Only stations with
complete data are included in this study since some of excluded stations are newly
established and some of them have technical data collection problems. Missing data
imputation for those stations and years was not a preferable choice because of the high
missing value rate.



264 Keser I.K.

3.2.1 Obtaining Individual Humidity Functions and Mean Humidity
Functions for Coastal Areas and Hinterland

Individual humidity functions of these 35 cities were obtained first with basis function
approach by using Fourier series for long term period 2000-2010, because Fourier series
are suitable to show the seasonality for long time and each season is observed multiple
times. Individual humidity functions of these 35 cities were obtained first with basis
function approach by using Fourier series for long term period 2000-2010, because Fourier
series are suitable to show the seasonality for long time and each season is observed
multiple times.

Figure 2: Individual Humidity Functions Fourier basis (K = 63)

Figure 3: Individual Humidity Functions Fourier basis (K = 33)
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We first use 63 basis functions, as the square root of evaluation points (4015) is ap-
proximately 63. In Figure 2 and 3, cities in coastal areas are presented with dashed lines
while hinterland cities are presented with solid lines and they are tagged on the right
side of the figures. Or if 33 basis functions (figure 3) are used, 3 per year, we can see the
seasonality and the difference between the coastal and hinterlands are like in 63 basis
functions. If we want to see the seasonality we suggest using 3 basis functions per year.
After a lot of trial and error we have concluded that number of time (evaluation) points
and basis functions (K) are closely related. For example, if the aim is to see the seasonal
change in daily data for one year, using three basis functions, which includes only the
first sine-cosine pair, seems to be appropriate. However, three basis functions are not
enough to see the change in daily data for 11 years since data would be over-smoothed.
Therefore, the number of time points and the aim of the study should be considered
together. Using fewer basis functions may lead to over-smoothing which ends up miss-
ing some important changes in data. Since deciding the number of basis functions by
trial and error is really cumbersome, using roughness penalty approach after deciding a
reasonable number of basis functions (for example three) seems more feasible. If anyone
wants to see the daily changes then the number of basis functions should be increased.

Also, from the figures we can see Fourier series are suitable and flexible for long term
periodical data. We try long term display also with B-Splines too. If we use a B-Spline
to show the seasonality changes between the hinterland and coastal areas, we should
use roughness penalty approach to see the changes and smoothing the data. But if we
want to see the eleven years cycle explicitly than the smoothing parameter should be
increased, because the number of observation points is too high, e.g. 4015. In both basis
function approach the eleven years cycle can be seen explicitly.
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Figure 4: Individual Humidity Functions B-Spline basis (lambda = 102)

Because daily data are typically noisy and so the smoothing process might lose im-
portant information, if we want to see the daily difference between the coastal areas
and hinterland or the daily variation, we should analyze data yearly or monthly in both
B-Spline and Fourier approaches.
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Figure 5: Individual Humidity Functions Fourier basis (K = 19)

Figure 6: Individual Humidity Functions B-Spline basis (lambda = 102)

Individual humidity functions of these 35 cities were obtained with basis approach
both with Fourier series and B-Splines. We use 19 basis functions per year, as the
square root of observation number (365) is approximately 19 in Fourier basis and we
use the least squares method to estimate the coefficients. When we use B-Spline ap-
proach for smoothing, we must use 367 basis functions and roughness penalty approach
to estimate the coefficients. We use the generalized cross validation (GCV ) method for
smoothing.

In both figures when individual humidity functions of hinterland regions are analyzed,
it was seen that when temperature increases, in other words, when summer months start,
humidity curves of hinterlands, which are relatively higher and far from coastal effects
decrease rapidly as expected and at other times, they follow a little higher course. Here,
the city that has the lowest humidity value is the city of Mardin, whose average height is
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1082 m and situated in Southeastern Anatolia Region, which is hinterland. On the other
hand, when individual curves are analyzed, it is possible to see that differences between
coastal areas and hinterlands increase in parallel with the increase in height and being
away from coastal areas. All of the coastal areas in our study have mostly high values
except winter months during which their values are very close to one another. It can be
seen that in hinterlands and high areas, amplitude variation is more.

Both of the approaches show us the differences explicitly. However, if one of them is
to be chosen, sum of squares of error may be examined. We suggest to use B-Spline
approach especially for one year’s data. There are some methods to select a smoothing
parameter. The famous is the generalized cross validation. But in applications mostly it
is preferred to select the smoothing parameter subjectively and smaller than the GCV
value.

Figure 7: Individual Humidity Functions B-Spline Basis and Original Data

Figure 8: Individual Humidity Functions B-Spline Basis and Original Data

As to show the quality of fit to the original time series data, individual functions
for two cities (one from hinterland, and one from coastal area) are plotted in Figure 7
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and 8 respectively along with their original data. If the main purpose is increasing the
quality of fit, then smoothing should be limited. If the main purpose is interpreting the
seasonality or the main variation modes, then smoothing may be used more flexibly.

In order to compare coastal areas and hinterlands, mean curves of both groups are
analyzed. In Figure 9, mean humidity functions of coastal areas are presented with a
dashed line while hinterlands’ mean humidity functions are presented with a solid line.
When compared the individual humidity functions, it can be seen well in this figure that,
humidity functions of hinterlands are lower than coastal areas most of the year.

Figure 9: Mean Humidity Functions of Coastal areas and Hinterland

When mean curves are analyzed, it is seen that coastal areas and hinterlands start
to differ starting from the 60th day in reverse directions and this difference increased,
and especially between the 90th and 270th days, it became more obvious. Towards the
end of the year, two regions start to have tendency to move together. During one and a
half month in a year and during the last one month, in other words during winter, this
difference becomes minimum. It is necessary to test if these findings are statistically
verifiable and functional t-tests can be used in order to determine this.

3.2.2 Comparison of Coastal areas and Hinterlands’ Mean Functions with
Functional t-Test

Functional t-test is used in order to test if the mean of two curve groups are statistically
different. We have two curve groups which have different number of curves observed in
the same time points. While one group is made of humidity curves of cities in hinterland,
the other one stands for humidity curves of coastal cities. As mentioned in Section
2, in order to apply a functional t-test, it is not necessary to have equal number of
curves in each group, but each curve should have equal number of observation points.
Two methods by Ramsay and Silverman (2005) and Cox and Lee (2008) are applied
simultaneously, to improve the validity of results. In this study, our observations in both
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coastal areas and hinterlands are analyzed for the year 2010 on the basis of 365 days.
We first give the results of Ramsay and Silverman and then the adjusted p-values using
the Westfall-Young randomization method by Cox and Lee respectively in Figure 10 and
11.

Figure 10: Functional t-test

Figure 11: Adjusted p-values
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With functional t-test, the time when coastal areas and hinterlands started to differ
can be revealed. When pointwise critical value is taken as reference, means of coastal
areas and hinterlands tend to differ starting from the 60th day. p value is reported as
0.05 when difference starts. This situation continues until about 280th day. But main
strong differences start when it becomes really hot, when conservative reference line
(maximum critical value) is taken into consideration, and continues until it becomes to
get colder. This situation exists around the period between the 90th and 270th days and
this is completely consistent with the expectations of the study. So, it can be concluded
that geographical location and structure is effective on humidity.

According to Cox and Lee, the adjusted p-value is found to be less than the critical
value of 0.05, meaning that the null hypothesis of ”no difference in time points” should
be rejected. Hence two approaches validate each other. Obtaining adjusted p-values is
easily implemented via the R package multtest Pollard et al. (2011).

Figure 12: Functional t-test for August 2010

Figure 13: Adjusted p-values for August 2010
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When summer months where the differences are likely to occur are examined, observed
curves are found to be well above the maximum critical value. In other words in all the
time interval there is a strong differences between coastal areas and hinterlands. For all
the time interval, the p-values are approximately 0.00. The adjusted p-values confirm this
too in Figure 13. The more the observed statistic gets far away from maximum critical
value, the more adjusted p-values get closer to 0.00. In other words, the probability of
rejecting the null hypothesis will increase.

3.2.3 Analysis of the period between 2000 and 2010

When the data for 2000-2010 years are analyzed together, it is seen that interpretations
for 2010 are valid for all of the years. Here, mean functions of 2000-2010 are analyzed
through a rainbow plot. Functional data analysis is firstly based on visualization; here,
in order to interpret 2000-2010 mean functions on the basis of years, separate rainbow
plots for coastal areas and hinterland are used.

In a rainbow plot, colors of curves are put in order according to the colors of a rainbow;
the oldest data are presented with red while the newest ones are purple. Rainbow plot is
used in this study in order to emphasize the features of data changes in time. Rainbow
graphic is especially useful for enlightening the time sequence of data. In a more typical
way, it can be used for organizing data according to functional depth or data density.
For instance, curves can also be colored according to their distance to median curve or
mean curve.

Figure 14: Coastal Areas Rainbow Plots of 2000-2010
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Figure 15: Hinterlands Rainbow Plots of 2000-2010

When Figure 14 and Figure 15 are interpreted together, it is seen that there isn’t a
regular increase or decrease. In other words, colors don’t exist in a rainbow ordering. If
there is a regular decrease or increase, the figure will look like a rainbow. Hyndman and
Shang (2010) can be examined for details on rainbow plots.

Figure 16: Functional t-test Results of the Years 2000-2010

Before examining all years separately, a functional t test is applied to all years (2000-
2010) and overall p-value is found to be less than 0.05. Results of this test can be
seen in Figure 16. Results of functional t-test and adjusted p-values that are used for
determining mean humidity curves for all of the years for coastal areas and hinterlands
are presented graphically in Figure 17-18 respectively.
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Figure 17: Functional t-test Results of the Years 2000-2009

Figure 18: Functional t-test Results of the Years 2000-2009
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Observed curves of each year is different from one another. Besides that, when all
of the years are analyzed together, it can be seen that although there are one-two days
difference in terms of years, coastal areas and hinterlands start to differ from one another
starting from the 60th day and this continues until approximately 280th day. p-value is
reported to be 0.05 for each when differences start. But the real strong differences are
again between 90th and 270th days when conservative reference line, i.e., the maximum
critical value is taken into consideration. This can also be seen from the rainbow plot in
Figure 19 which all years can be interpreted simultaneously. When all of the years are
analyzed together, the same things above can be said for adjusted p-values obtained by
Westfall-Young approach too. In the same time interval the p-values are smaller than
the significance level α. The both approach by Ramsay and Silverman and Cox and Lee
support each other as expected for this application.

Thus when all of the years between 2000 and 2010 are taken into consideration, it can
be said that except the coldest winter months, mean humidity functions between coastal
areas and hinterlands are statistically different, which is consistent with the expectations
of the research. This can be seen in Figure 19 too.

Figure 19: Rainbow plot of the Years 2000-2010

Rainbow plot also shows where the differences start and end for all years as well as
if there is a regular increase or decrease. Figure 19 shows no regular increase or decrease.

In this study, it is found out that using either Fourier or B-Spline basis for modeling
the differences does not have any considerable effect on p-values. However, smoothing the
data makes interpretation easier for both approaches. Therefore, using basis functions
for smoothing instead of interpolation can be suggested.

4 Conclusion

In this study, effects of geographical location and landform on humidity curves are inves-
tigated while also showing the practicality of functional data analysis. For this purpose,
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Turkey, which has a variety of climate and geographical landform, is studied. As Turkey
is surrounded by three seas and the elevation increases from west to east, both the ge-
ographical situation and the landform affect humidity. According to this, it is expected
that humidity curves of coastal areas and hinterlands differ. Although this can be seen
when individual humidity curves and mean curves obtained by smoothing data are vi-
sually examined, it is also necessary to determine if mean humidity functions of these
areas are statistically different. For this aim, humidity curves of 35 cities, whose data
for 2000-2010 years are complete, were separated into two groups as coastal areas and
hinterlands. In order to see if two curve groups have the same functional curve, in other
words, in order to test if humidity mean functions of coastal areas and hinterlands are
statistically different, functional t-tests, which were created on the basis of permutation
tests and Westfall and Young approach, were used simultaneously to improve the va-
lidity of results. As a result of this, although the observed curve that was made of the
differences of two curve groups is different in terms of years, it can be easily determined
by functional t-test graphics that differences for each year started and ended almost at
the same time. The adjusted p-values confirm this too. Except winter months during
2000-2010, mean functions of coastal areas and hinterlands were different from one an-
other at 0.05 significance level. This situation becomes more obvious when temperature
increases. One of the significant reasons of this difference is that hinterlands are higher
than coastal areas and effects of seas cannot enter the inner lands because of the shape
of coasts and mountains. Additionally, rainbow plots are used to identify if there is a
regular increase or decrease in the differences or the curves along the years. If a reg-
ular movement is detected, the differences may be estimated and/or modeled by some
nonparametric approaches.
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