
Electronic Journal of Applied Statistical Analysis
EJASA, Electron. J. App. Stat. Anal.
http://siba-ese.unisalento.it/index.php/ejasa/index

e-ISSN: 2070-5948
DOI: 10.1285/i20705948v7n1p37

A modified minimum divergence estimator: some
preliminary results for the Rasch model
By Lando and Bertoli-Barsotti

April 26, 2014

This work is copyrighted by Università del Salento, and is licensed un-
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aDepartment of Finance, VŠB-Technical University of Ostrava, Ostrava, Czech Republic
bDepartment of Management, Economics and Quantitative Methods, University of Bergamo,

Italy

April 26, 2014

Since its introduction, the joint maximum likelihood (JML) has been
widely used as an estimation method for Rasch measurement models. As
is well known, when the JML method is used, all item and person parame-
ters are regarded as unknowns to be estimated. In this paper we focus on
some drawbacks of the JML for the Rasch model: viz. i) the occasional
non-existence of estimates, and ii) the bias of item parameter estimates. We
propose a new estimation method which is based on the Minimum Divergence
Estimation approach and consists in appropriately modifying the empirical
distribution function. We provide empirical evidence that this method can
solve the problem of the non-existence of the estimates and, at the same
time, can reduce the bias of item parameter estimates compared to those
obtained with both traditional JML estimation and the (k− 1)/k correction
factor (where k is the number of items) commonly applied in JML software.

keywords: Rasch model, MLE, minimum divergence estimate, bias.

1 Introduction

The Rasch model (RM, Rasch 1960) is a well-known special case of the general Item
Response Theory (IRT). In that context, the RM refers to the problem of measurement
of a latent (unobservable) quantitative trait, say “ability”, given a set of items used
to measure that latent trait. In the RM, each item is also characterized by an item
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parameter, which may be interpreted as the “difficulty” of that item. Since its intro-
duction, the RM – sometimes also referred to as the one-parameter logistic model – has
been widely applied in many areas other than psychometrics alone. Indeed, there are
some remarkable properties of the RM which are of large practical use for resolving the
problem of the “measurement” of latent variables. First, the RM is usually considered
able to measure on an interval scale level. Second, the RM fulfils the requirement of
generalizability, in that it produces estimates (measurements) that do not depend on
conditions of measurement. For example, estimates of a person’s ability do not depend
on the sample of persons being examined and the particular items used in the test.
This important property is also known as specific objectivity. To estimate the item and
person parameters, the likelihood may be jointly maximized. This method is usually
called joint maximum likelihood estimation (JML) – and it coincides with the usual
maximum likelihood estimation (MLE). Hence, in what follows, we will use these terms
interchangeably.

The JML procedure suffers from a number of problems, the most important of which
is the presence of infinitely many incidental parameters. Moreover, in particular,

i. (existence problem) for some particular datasets, finite estimates of parameters are
not available;

ii. (bias problem) item parameter estimates are biased, especially for short tests,
independently from the sample size.

These problems also hamper the normal approximation algorithm PROX (Linacre
2009; for a recent application of the use of PROX method see Lucadamo 2010). Problem
i) is due to the fact that, for fixed sample size, there is always a positive probability
of observing data lying on the boundary of the sample space. This is a well-known
problem in the field of logistic regression modeling (see Agresti 2007), and more generally
within the class of the exponential family of distributions. In classic logistic regression,
this problem is known as perfect discrimination (Agresti 2007, p.153), or also as the
problem of missing overlap (between successes and failures, (Albert and Anderson, 1984).
Several techniques have been suggested to remedy this problem. For example, in regard
to the classic logistic regression model Rousseeuw and Christmann (2003) proposed
the Maximum Estimated Likelihood (MEL) method and proved that it yields finite
estimates under certain assumptions. More specifically, the authors presented a hidden
logistic model : the model assumes that the true responses are unobservable, so that
the true empirical observations are substituted by so-called pseudo-observations, which
are linked to the true ones by probabilistic assumptions in the form of probabilities of
misclassification errors. Type I and type II error probabilities are given by (1− δ1) and
δ0, where δ0 and δ1 are unknown parameters. Although similar formulas (estimators)
can be derived from Rousseeuw and Christmann’s approach, problem formulation and
applications are clearly quite different from ours. We shall return to this point later. We
can also cite Kosmidis (2007) who proved that the modified-score functions approach to
bias reduction proposed by Firth (1993) fulfils -under certain regularity assumptions- the
same property of finiteness estimates. These important results still have to be studied
in detail in the special case of the JML estimation of the RM (that is, in a context
in which the dimension of the unknown parameter is not fixed, but grows with the
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sample size). We recall that, for the RM, the necessary and sufficient conditions for
nonexistence of MLE are stated by Fischer (1981). They occur: a) in the presence of
zero and/or perfect person totals; b) in the presence of zero and/or perfect items totals
(that is, null-categories); c) for other special configurations of the dataset (so-called ill-
conditioned datasets). The bias problem ii) is also sometimes referred to as a problem
of “inconsistency” (Jansen et al., 1988). Indeed, an estimator is consistent if, as sample
size approaches infinity, the estimated value approaches the true value. Andersen (1980)
proved that when the MLE is used, there is no guarantee that increasing sample size (that
is, the number of respondents) will yield better item parameter estimates. At present,
the best-known solution for correcting the bias of the MLEs of the item parameters of
the RM is the one suggested by Wright and Douglas (1977) (see also Wright 1977, Wright
1988): to be specific, Wright and Douglas argue that a correction factor of (k -1)/k, where
k is the number of items, remove most of the bias. This approach will henceforth be
denoted as corrected-JML (C-JML). To jointly solve the estimation problems at their
source a new method is introduced in the present paper: its key principle consists in the
minimum divergence (MD) estimation procedure (Ali and Silvey, 1965). As well known,
the MD methods include, as special cases, the classic maximum likelihood method as
well as minimum chi-squared methods. In particular, the proposed method consists in
adjusting the empirical distribution of the observations. Since the sensitivity of this
adjustment depends on an arbitrarily small positive number ε, the method is called ε-
adjustment. In particular, this paper focuses on the adjusted version of the ML, which
is simply based on the adjustment of the Kullback-Leibler divergence. The right choice
of ε is somewhat troublesome, since it can depend on several elements including the size
of the dataset; nonetheless it can be found empirically and approximately. Simulation
studies show that, on setting ε conveniently, the method provides acceptable estimates,
even for well-conditioned datasets. Moreover, we found that the ε-adjustment method
may also be very useful for correcting the bias of the MLEs of the item parameters and
it seems to work even better for this purpose than the C-JML which is known to be, at
present, the best solution for the bias problem. For this reason, in section 4.6 we compare
the estimates provided by these two alternative methods with a simulation study. In
section 2 we present the estimation of the RM as a MD problem. Then, in section 3,
we analyze the situations which typically produce estimation problems: that is, extreme
scores, null categories and ill-conditioned datasets. In section 4 we propose the new
method and we analyze it using an ill-conditioned dataset. Finally, with a simulation
study, we compare the accuracy of the estimates yielded by the new method with those
furnished by the C-JML method. To perform the simulations and other computations
we used the Mathematica software package (Wolfram Research, 2003).

2 MD estimation of the RM

2.1 MD method: a brief overview

In a loose sense, a divergence measure quantifies the disparity, or “distance”, between
two statistical distributions. Divergence measures are defined in a somewhat general
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way, for example, in Ali and Silvey (1965). For our purpose (estimation), we need to
define divergence measures between theoretical and empirical distributions. Consider
a parametric family F, of discrete distributions, defined on a set S. We call divergence
measure between Fξ∈F, where ξ is a parameter, and the empirical distribution function
of the data, Fm, defined on Sm ⊂ S, any function with the form A) or B), respectively
given by:

Ψ (Fξ, Fm) =
∑
x∈S

ψ

(
fm(x)

fξ(x)

)
fξ(x) (1)

where ψ is a strictly convex function, or

Φ (Fm, Fξ) =
∑
x∈Sm

φ

(
fξ(x)

fm(x)

)
fm(x) (2)

where φ is strictly convex and decreasing. fξ and fm are respectively the probability
function and the empirical probability function corresponding to Fξ and Fm. Many well
known divergence measures belong in this class. For example, from expression (1) we
obtain the Chi-square divergence, for ψ(x) = (x− 1)2 and the Hellinger divergence
(Simpson, 1987) for ψ(x) = (

√
x− 1)

2
; on the other hand, from expression (2) we ob-

tain the Kullback-Leibler divergence for φ (x) = −ln(x) (Kullback and Leibler, 1951).
Divergences are used to measure the “distance” between statistical distributions. In
particular take Fξ1 , Fξ2∈F : if Fξ1 is “more equal” to Fm than Fξ2we should have a
smaller divergence between Fξ1 and Fm rather than between Fξ2 and Fm. Hence we can
use any divergence measure to produce a MD, or minimum distance, estimation (Wol-
fowitz, 1957). Put simply, MD estimation consists in finding the distribution Fξ∈Fwhich
minimizes the divergence with respect to Fm.

2.2 The MD estimation approach in the RM

Estimation in the RM can then also be seen as a MD problem. In the RM, we consider
a n × k dataset, with elements Xvi, v = 1, ..., n, i = 1, ..., k, where Xvi are indepen-
dent Bernoulli random variables representing the answer of n persons to i items. The
probability function depends on the parameters βi(i = 1, 2, ..., k), denoting the item
difficulty, and θv (v = 1, 2, ..., n), denoting the person ability. It is given by:

p (xvi) = P (Xvi = xvi | θv, βi) =
exp {xvi(θv − βi)}
1 + exp {(θv − βi)}

(3)

Note that in our situation we have to deal (for every cell (v, i) of the data matrix) with
an empirical distribution function, say Fmvi, (let us denote with fmvi the corresponding
frequency function) which is necessarily degenerate at the point 1 or 0 (depending on
the success xvi =1 or failure xvi =0). For clarity, observe that:

fmvi (x) =

{
1 if x = xiv

0 if x 6= xiv
, (4)
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where x can be 0 or 1. Hence, for the estimation of the n+k unknown parameters in the
RM (minus one, for an identifiability constraint), we consider n × k divergences (one for
each cell), between Fmvi and a theoretical distribution function Fθβvi with corresponding
probability function fθβvi. For clarity, observe that:

fθ,β,vi (x) =

{
p (xvi) if x = xiv

1− p (xvi) if x 6= xiv
, (5)

where x can be 0 or 1. In the general case, for any divergence measure of the form A
or B, we want to find the minimum of:∑

i,v

Ψ (Fθβvi, Fmvi) or
∑
i,v

Φ (Fmvi, Fθβvi) (6)

To clarify the interpretation of this formula, there follow some special and well known
examples of MD problems applied to the RM.

1. Kullback-Leibler divergence. The problem of the minimization of the following
function (formula (2)): ∑

i,v

−ln p (xvi) = −l (7)

is equivalent to that of the maximization of the function l, that is the log-likelihood
function.

2. Chi-square divergence. For the generic cell (v,i), the formula (1) yields:

Ψ (Fθβvi, Fmvi) =
(p (xvi)− 1)2

p (xvi)
+

(1− p (xvi))
2

1− p (xvi)
=

(1− p (xvi))
2

(1− p (xvi)) p (xvi)
. (8)

Then, the joint minimization of the n × k Chi-square divergences leads to the
problem of the minimization of the function:

∑
vi

[
(1− p (xvi))

2

(1− p (xvi)) p (xvi)

]
=
∑
vi

[exp {(θv − βi) (−1)xvi}] (9)

which provides the minimum Chi-square estimates of βiand θv (see also Linacre
2004). (Incidentally, it may be worth noting that this approach is not related to
the so-called MINCHI procedure; Molenaar 1995)

3 Estimation problems with the RM

As outlined above, in a number of cases, estimates of the parameters of the RM may
not exist. We will briefly discuss these situations in what follows.
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3.1 Extreme scores and null categories

We obtain an extreme score when an individual gives correct responses to each item
(perfect score) or to none of them (zero score). Similarly, a null (or “unused”) category
occurs when every individual gives the same (correct or incorrect) response to an item.
If the individual v obtains an extreme score, MD methods cannot find a finite estimate
for θv, which will then tend to -8 (zero score) or +8 (perfect score). Similarly, if item
i obtains an extreme score, the estimate of βi will tend to -8, or +8. This estimation
problem has a logical explanation related to the MD method: a perfect individual score
(response pattern (1,1,1,. . . ,1)), for example, suggests finding an ability parameter θ such
that the theoretical distribution is the closest one possible to the degenerate distribution
at the point 1 (for any item). Obviously, a higher value of θ provides a higher probability
of a correct response, so that the estimate diverges. This is not the case, for example, of
the pattern (0,1,1,1. . . ,1), because a single zero score is enough to prevent the estimate
of θ from diverging. The estimation problem can be solved by erasing the rows (or
columns) with extreme scores, or by modifying the total scores, adding (in the case of
zero scores) or subtracting (in the case of perfect scores) a fixed number between 0 and 1.
For example, the value 0.3 is used, by default, by the Winsteps (Linacre, 2009) computer
program.

3.2 Ill-conditioned datasets

As regards the JML estimation, it is well known that the absence of extreme scores and
null categories is not a sufficient condition for the existence of the estimates. Indeed,
persons with higher ability tend to give correct responses to the easier items, and persons
with lower ability tend to give incorrect responses to the more difficult items: if this
tendency becomes a “rule” in the dataset, another estimation problem may arise. In
particular, a dataset is ill-conditioned (Fischer 1981, Bertoli-Barsotti 2005) if there exists
a partition of the respondents into two non-empty subsets such that any individual in
the first subset obtains, for any item, a score which is not less than the score of any other
individual in the second subset. As a limit case, this situation may obviously be due
to the presence of extreme scores, but this is not a necessary condition. In particular,
we shall focus on the situation in which, after removing any extreme scores or null
categories, the data matrix exhibits the particular structure represented in Figure 1.

[
1\0 1

0 1\0

]

Figure 1: Non-extreme ill-conditioned matrix structure. See also Fischer (1981).

We will call this special case the “non-extreme” (n.e.) ill-conditioned dataset, which
is simply understood to be an ill-conditioned dataset without extreme-scores or null
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categories. In this case we can identify two sets of individuals and two sets of items.
The individuals in the first set (constituted by the persons with higher ability) will give
correct responses to every item in the second set (constituted by the less difficult items).
At the same time, the individuals in the second set (the persons with lower ability) will
give incorrect responses to every item in the first set (the more difficult items). In this
situation, no individual in the second set can obtain a score higher, for any item, than
that obtained by any individual in the first set. Hence, there is an ability gap between
the two sets that cannot be mathematically measured. For this reason all the estimates
of θ for the first set of persons will tend to +8 and all the estimates of θ for the second
set of persons will tend to -8. Analogously for the two sets of items, we cannot find any
finite estimate. Besides, more generally, this estimation problem may also hamper the
MD method. Indeed, the divergence is minimized by a theoretical distribution which is
the closest to 1 in the second quadrant of the matrix, and to 0 in the third quadrant.
Consequently, one should have θ→∞ in the first set and θ→-∞ in the second; β →∞ in
the first set and β →-∞ in the second. Most software fails to recognize that MLEs of the
parameters of the RM go to infinity when an n.e. ill-conditioned dataset is considered.

4 The ε-adjustment method

4.1 Stating the procedure

As explained in section 2, estimation problems may arise if the model gets “closer”
to the data as the parameter values approach infinity. Our proposal for solving this
problem is to “fuzzify” the empirical observations, so as to avoid the risk of a theoretical
distribution perfectly matching the empirical one, for infinite parameter values. An
intuitive explanation of the method is as follows. Suppose that each item is submitted
100 times to each individual and that, in each case, we obtain 99 correct and 1 incorrect
responses, instead of 100% of correct responses; or the opposite case of 99 incorrect and 1
incorrect responses, instead of 100% of incorrect responses. In this situation the empirical
distributions, in each cell of the matrix, are not degenerate distributions. In fact, in the
case of success the distribution would be 0 with frequency 0.01 and 1 with frequency
0.99, in the case of failure it would be 0 with frequency 0.99 and 1 with frequency 0.01.
If we apply the MD method to these modified empirical distributions, and use it to
estimate a RM on an n.e. ill-conditioned dataset, we find values of θ and β such that
the theoretical distributions are as close as possible to 0.99, in the second quadrant of
the matrix (see Figure 1) and to 0.01 in the third quadrant. To reach those values (0.99
or 0.01) there is no need for the parameter estimates to diverge to +∞ or -∞. This can
also be applied in the more general case of ill-conditioned datasets. With extreme scores
or null categories, the same result holds: the existence of the estimates. The problem of
non-existence is very common and involves not only the Rasch model. We now define a
new general method to solve the problem of non-existence due to degenerate empirical
distributions. Let Fξ be a discrete distribution defined on a set S. Suppose that the
empirical distribution of the data Fm is degenerate at the point x0∈S, thus we get:
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fm (x) =

{
1 if x = x0

0 if x 6= x0
. (10)

In many situation, the MD estimate for the parameter ξ does not exist. The problem
can be solved by a “fuzzification” of the empirical distribution that leads to a new
empirical distribution which is not degenerate. For a given positive and arbitrarily small
number ε (<1), it is possible to “fuzzify” Fm by attributing weight 1 − ε (rather than
1) to the point x = x0. As for the other points in S, it is always possible to define an
appropriate subdivision of ε into a number of addends which matches the points in S
except from x0, and then apply the MD method. This procedure requires to re-define
the empirical distribution, however this assumption can be avoided with the following
alternative solution. Suppose our only information is that the relative frequency (or
empirical probability) of point x0 is given by 1− ε. More precisely:{

f εm (x) = 1− ε if x = x0∑
x 6=x0 f

ε
m (x) = ε if x 6= x0

. (11)

As (11) do not completely identify (except for the case #S=2) the new empirical
distribution say F εm, the MD method cannot be applied properly. Hence we propose
to estimate the unknown parameter by minimizing an improper divergence measure
between Fξ and F εm, defined as:

Ψ∗ (Fξ, F
ε
m) = ψ

(
1− ε
fξ (x0)

)
f ξ (x0) + ψ

(
ε

1− f ξ (x0)

)
(1− f ξ (x0)), (12)

where ψ is a strictly convex function, or

Φ∗ (F εm, Fξ) = φ

(
fξ (x0)

1− ε

)
(1− ε) + φ

(
1− f ξ (x0)

ε

)
ε, (13)

where φ is a strictly convex and decreasing function.
The improper divergence measures defined above simply attribute weight 1 − ε to the
“observed” and weight ε to the “unobserved”. We call this fuzzification of the em-
pirical distribution function ε-adjustment. It is worth noting that if #S=2 (as in
the case of the RM) the empirical distribution is completely identified by (11), which
means that (11) and (12) define real divergence measures: in other words when #S=2
Ψ∗ (Fξ, F

ε
m) = Ψ (Fξ, F

ε
m) and Φ∗ (F εm, Fξ) =Φ (F εm, Fξ). The ε-adjustment method solves

the estimation problems in the RM by approximating each empirical distribution Fmvi
(see expression (4)) with its ε-adjusted version F εmvi, (denote with f εmvi its ε-adjusted
empirical probability function) such that:

f εmvi (x) =

{
1− ε if x = xiv

ε if x 6= xiv
, (14)
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where ε is an arbitrarily small positive number. As we will show below, our alter-
native approach to estimation in the RM is simply based on the MD method applied
to the modified empirical distributions shown in expression (11). We can apply the
ε-adjustment to any divergence measure. The general formula is:

∑
i,v

Ψ (F εmvi, Fθβiv) =
∑
i,v

[
ψ

(
1−ε
p (xvi)

)
p (xvi) + ψ

(
ε

1− p (xvi)

)
(1− p (xvi))

]
(15)

for any divergence measure Ψ of the form A, expression (1), and

∑
i,v

Φ (F εmvi, Fθβiv) =
∑
i,v

[
φ

(
p (xvi)

1−ε

)
(1−ε) + φ

(
1− p (xvi)

ε

)
ε

]
(16)

for any divergence measure Φ of the form B, expression (2).

Thus, for the special case of the Kullback-Leibler divergence, we obtain the ε-adjusted
MLE by minimizing (with respect to the unknown parameters) the function:

−lε =
∑
i,v

[− (1− ε) ln p (xvi)− ε ln (1− p (xvi))] . (17)

It is interesting to note that the the ε-adjusted MLE belongs to a more general class of
estimators: that is those obtained by maximizing a modified version of the log-likelihood
function, say the ε-adjusted log-likelihood function. Specifically:

lε = l +Aε, (18)

where the function Aε =
∑

i,v εln [(1− p(xvi))/p(xvi)] is allowed to depend on both
the data and the parameters. To be noted is that the above mentioned Firth’s formula
(Firth, 1993) belongs to the same class of estimators, but clearly leads to a different
modified log-likelihood function. Analogously, in regard to the Chi-square divergence,
we obtain an ε-adjusted minimum Chi-square estimate by minimizing the function:

∑
i,v

[
(p (xvi)− (1− ε))2

p (xvi)
+

(1− p (xvi)− ε)2

1− p (xvi)

]
=
∑
i,v

[
(p (xvi)− (1− ε))2

(1− p (xvi)) p (xvi)

]
(19)

Simulations (only partially reported here) show that, on setting ε conveniently, these
methods provide estimates not too far from traditional MLE and minimum Chi-square
when traditional estimation is possible, and acceptable estimates when these traditional
methods fail to give finite estimates. As regards the RM, Fischer (1981) and Bertoli-
Barsotti (2005) show that, under the problematic conditions specified in 3.1 and 3.2, the
ML method will always produce infinite estimates. In these same particular situations,
empirical evidence shows that the ε-adjusted JML estimates do exist. Indeed, the ε-
adjusted JML estimator always exists and is unique, as is proved in what follows.
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4.2 Existence and uniqueness of the ε-adjusted JML estimate for the
RM

Let p (xvi) be defined as in (3). Moreover let, for short, θv − βi = σvi and Dvi =
1 + exp (σvi). The ε-adjusted log-likelihood function to be maximized thus becomes

lε (σ) =
∑
vi

[(1− ε) (σvixvi − lnDvi) + ε (ln (1 + expσvi − exp (σvixvi))− lnDvi)] =

= −
∑
vi

lnDvi +
∑
vi

[(1− ε)σvixvi + ε · ln (1 + expσvi − exp (σvixvi))] =
∑
vi

γ (σvi, xvi) .

(20)
Interestingly enough, a similar formula can be obtained by applying the cited MEL

method (Rousseeuw and Christmann, 2003) to the RM, that is:

lEST (σ) =
∑
vi

[((1− xvi) δ0 + xviδ1) (σvi − lnDvi) + (1− (1− xvi) δ0 − xviδ1) (−lnDvi)] .

(21)
Nevertheless, it is important to stress that lε and lEST are differently motivated.

Indeed, there are several important differences between MEL and ε-adjustment methods:

1. The MEL approach is focused on binary regression models, while the ε-adjustment
method can be applied to a more general class of models as well (see section 4.1).

2. The MEL technique is based on the maximum likelihood estimation, while the
ε-adjustment method can be applied to a more general framework of divergence
measures.

3. The aim of the MEL approach is to develop a model to explain the occurrence of
misclassification errors (remember that for binary data a misclassification error is
a transposition 0 → 1 or 1 → 0), as for example in the case of a medical diagnosis
(Rousseeuw and Christmann 2003, p.316). Actually, Rousseeuw and Christmann
assume that the true response is unobservable. Instead, in our context, we exclude
the occurrence of misclassification, according to standard IRT modelling where it
is assumed that the response variable is observed without errors.

4. The MEL approach is motivated by the problem of the bias induced by the presence
of misclassifications (outliers), while our problem is, in a sense, the opposite, that
is the bias induced by the absence of outliers. Indeed, our estimation problem with
the RM originates from the probability of occurrence of degenerate samples when
the parameter is “close” to the boundary of the parameter space.

5. The MEL approach introduces in the model two unknown parameters to be esti-
mated, δ0 and δ1, related to type I and type II error probabilities. By definition,
there are no mathematical constraints between these parameters (except that:
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0 < δ0 < δ1 < 1), because they represent probabilities on two different probability
spaces. On the contrary, {ε, 1− ε} (where ε, instead, has not to be estimated)
is a set of two positive constants that must to sum up to one, to define a proper
cumulative distribution function.

All that said, if we substitute δ0 = ε and δ1 = 1− ε we may derive, in particular,

lEST (σ) = −
∑
vi

lnDvi +
∑
vi

(xvi + ε− 2εxvi)σvi =
∑
vi

λ (σvi, xvi) . (22)

Hence, in particular, the functions lε and lEST become mathematically (even if not
conceptually) equal, because

γ (σvi, 0) = λ (σvi, 0) = −lnDvi + εσvi, (23)

γ (σvi, 1) = λ (σvi, 1) = −lnDvi + (1− ε)σvi. (24)

Since 0 and 1 are the only possible values for xvi, there is no loss of generality if we
consider the problem of the maximization of lEST (σ) instead of that of lε(σ). We thus
immediately conclude that the ε-adjusted MLE always exists and is unique by virtue of
what is proved in Rousseeuw and Christmann (2003, Property 1, p.320).

4.3 ε-adjusted JML estimate of an ill-conditioned dataset

An important matter of fact is that the method proposed can work while JML (and then
the C-JMLE, as far as the item parameter estimates are concerned) fails, which means
that, at present, this alternative represents a valuable option. This can be illustrated by
the following example. Tables 4 and 5 in Appendix A present the ε-adjusted ML esti-
mates for an n.e. ill-conditioned 30×10 matrix. The dataset was randomly generated by
using 10 item difficulties fixed between -4 and 4, (-4,-3.5,-2.5,-1.5,-0.5.0.5,1.5,2.5,3.5,4),
and two different sets of 15 ability parameters each, generated from a normal distribu-
tion, with standard deviation 1 and means -1.5 and +1.5, respectively. These somewhat
strange parametric values are only due to the fact that it is not easy to randomly generate
an n.e. ill-conditioned dataset (especially for medium/large test lenghts). The results
reported in these tables show that the ε-adjusted ML method (in this case ε = 0.04)
yields acceptable estimates, because their values θ̂εv and β̂εi are not too far from the real
ones, although the size of the dataset is quite small. In the last two columns of the tables
we report - for exemplificative purposes only - the estimates produced by RUMM2020
(Andrich et al., 2003) and Winsteps (Linacre, 2009) computer programs. Because these
estimates are quite distant from the true values, they cannot be considered as acceptable,
as their values strongly depend on the number of iterations used by the programs. A
larger number of iterations would make the estimates grow and grow to infinity: these
softwares seem not to recognize the estimation problem and to treat this matrix as a
non-problematic one.
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4.4 On the possible influence of extreme scores

It is well known that extreme row scores have no influence on the MLE of item param-
eters. In fact a zero, or perfect, score does not furnish any information about the item
difficulties (similarly, items with unused category have no influence on the MLE of the
person parameters). However, we may conjecture that there is a little difference if the
extreme scores are all zero or all perfect scores. Is it possible to obtain some information
from the ratio between the number of zero scores and the number of perfect scores?
The following example shows that the ε-adjusted MLE follows this line of reasoning.
Consider the 10×6 dataset (randomly generated) shown in Table 1.

Table 1: Data matrix without extreme scores

1 0 0 0 1 0

1 1 1 1 0 1

1 0 0 0 0 0

1 0 1 0 0 0

1 1 0 0 1 0

1 1 0 0 0 0

1 1 0 0 0 0

1 0 0 0 1 0

1 1 1 0 0 0

0 1 1 1 1 0

If we add 6 rows with extreme scores to this matrix we have 7 different possibilities:
6 zero scores (6z), 5 zero scores and 1 perfect score (5z,1p), 4 zero and 2 perfect scores
(4z,2p), 3 zero and 3 perfect scores (3z,3p), 2 zero and 4 perfect scores (2z,4p), 1 zero
and 5 perfect scores (1z,5p) and 6 perfect scores (6p). Table 2 shows how the ε-adjusted
MLE (ε=0.01) of the β parameters changes in these different situations. As can be seen,
if the number of perfect scores increases (with respect to the number of zero scores),
the difficulties of the first and the last items (β1 and β6) decrease. On the other hand,
the difficulties of the remaining items β2,. . . ,β5 slightly decrease. In this example, the
differences among the results are anyway quite small, and the ratio between extreme
and non-extreme rows is 6/10: if we had a smaller ratio we could have much smaller
differences.

Hence, the ε-adjusted MLE may somehow be influenced by extreme scores: this may
be a good property because the changes in the estimates could correspond to a deeper
analysis of the dataset with respect to the traditional MLE. However, this particular
aspect should be elaborated further, with other examples and simulation studies.
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Table 2: Dependence of extreme row scores on ε-adjusted MLEs β̂εi of item parameters.
Results for zero scores that vary from 6 to 0 and perfect scores that vary in a
complementary way, from 0 to 6.

(6z) (5z,1p) (4z,2p) (3z,3p) (2z,4p) (1z,5p) (6p)

β̂ε1 -2.6930 -2.7136 -2.7353 -2.7581 -2.7822 -2.8076 -2.8344

β̂ε2 -0.9378 -0.9292 -0.9205 -0.9117 -0.9027 -0.8935 -0.8841

β̂ε3 0.0509 0.0616 0.0722 0.0829 0.0937 0.1045 0.1155

β̂ε4 1.2897 1.2969 1.3040 1.3109 1.3177 1.3245 1.3313

β̂ε5 0.0509 0.0616 0.0722 0.0829 0.0937 0.1045 0.1155

β̂ε6 2.2393 2.2227 2.2074 2.1931 2.1799 2.1676 2.1563

4.5 Comparisons

The ε-adjusted ML estimates cannot be directly compared with the C-JML estimates
in the special case of n.e. ill-conditioned datasets because in this case the JML fails to
provide finite estimates. Moreover, at least in the case of extreme scores, most softwares
use an ad-hoc correction method (as explained in section 3.1), to provide finite estimates.
In the sequel we focus on the estimation of the item parameters, considering the individ-
ual abilities as nuisance parameters. We will compare ε-adjusted MLE with MLE and
C-JMLE with a simulation study, focusing on the minimization of the estimation error
for the item parameters. Since the C-JMLE method is well known and commonly used,
it can be considered to be the “standard correction” method – commonly implemented
in the JML software. Nevertheless, as pointed out in Jansen et al. (1988), this bias
correction is not fully satisfactory, since the bias may depend on the skewness of the
item difficulty distribution. Also, the C-JMLE method cannot remove the bias when the
number of items k is particularly small (k<10). Moreover, as proved in Bertoli-Barsotti
and Punzo (2012), the C-JMLE generally works better than Firth’s correction for the
RM. Hence, in our comparison analysis, we decided to consider only this “standard”
method, as a benchmark.

4.6 Simulations

In our simulation study, different combinations of values for k and n were considered,
that is: k=5, 10, 20, 30, and n=200, 300, 500, 1000. One hundred datasets were
randomly generated for each combination of the values of k and n. For each dataset,
the θ parameters were randomly generated from a normal distribution with mean zero
and standard deviation equal to 0.5 and 0.7. We report our simulation results in Tables
6 and 7 in Appendix B. The values in each cell are the averages of 100 empirical mean
squared error (MSE) obtained with the different estimation methods considered. In bold
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are the smallest values across the methods considered. In the first set of simulations, the
β parameters were fixed and equally spaced in the range considered. In the second set of
simulations, the β parameters were re-centered at zero, after being randomly generated
from uniform distributions with different ranges, that is, U(-2,2), U(-3,3). Thus each
dataset was generated by different values of parameters (θ and β), in order to consider
a large class of different situations.

As said, the estimation methods considered were 1) MLE, 2) C-JMLE, and 3) ε-
adjusted MLE. The latter was considered for different values of ε (at least the ones
which seemed the most suitable – for this first analysis). As a general rule, the larger
n is, the higher the probability of obtaining extreme column scores. But this is not a
problem, because we are concerned only with the estimates of the β parameters, which
are not influenced by extreme column scores. Besides, there is no risk of obtaining
extreme row scores with the combination of parameters (θ and β) that we used, so the
that MLE estimates of the β parameters always exist. We summarize the results of our
two sets of simulations as follows.

1. β fixed and equally spaced.

It appears that the ε-adjusted ML yields the best results for suitable choices of ε:
the larger k is, the smaller ε should be. If k increases, the difference among the
three methods is less evident: for high values of k, the correction methods may
even become superfluous because the risk of having extreme scores or ill conditioned
matrices is close to zero.

2. β randomly generated from uniform distribution.

This second simulation study only confirms what we found in the first one. The
sole difference is that the MSEs are a little larger (on average) than before. This
is due to the fact that equally spaced parameters are easier to estimate than ones
randomly generated from a uniform distribution.

5 Conclusion

Our preliminary empirical results show that the ε-adjusted MLE method provides ac-
ceptable estimates in both troublesome situations: extreme scores and n.e. ill-conditioned
datasets. In the latter case, this may be the only viable estimation method, since the
other well-known and widely-used methods (for the RM) are known to fail. Hopefully,
this empirical and preliminary finding will be extended to cover more general cases in our
future studies. Moreover, although it was not conceived for the purpose, the ε-adjusted
MLE method appears also to be a good solution for correcting the bias of the MLE, as
shown in the simulations, especially when the size of the dataset justifies the use of the
method (smaller datasets have a higher risk of n.e. ill-conditioned or extreme scores).
On the other hand, the “optimal” values for ε can only be found empirically. This is cer-
tainly a drawback, and further simulations could furnish us more accurate information.
Nevertheless, the simulations performed thus far show that there is a relation between
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the “ideal” choice of ε and the number of items k. This can be summarized in Table 3,
which provides a useful guidance for application of the ε-adjustment method. Although
we cannot say that the choice of these values for ε is absolutely the best, we surely are
certainly confident that the ε values considered are enough to improve not only the tra-
ditional ML estimates but also the “corrected” ones (C-JMLE). As a rule of thumb, we
found that a good choice of ε could be ε=0.3/k. Finally, the question of the influence of
extreme scores on the estimates (studied in Section 4.4) should be investigated further
with simulations, given that it could be another good property for this method.

Table 3: “Ideal” choice of ε for different test lengths k

k ε

5 0.05

10 0.03

20 0.02

30 0.01
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Appendix A: An instance of an n.e. ill-conditioned dataset

Table 4: Comparisons between ε-adjusted MLEs θ̂εv (ε = 0.04) of person parameters and
the corresponding estimates given by two estimation programs RUMM2020
(Rumm) and Winsteps (Win), with default settings (both these softwares have
convergence problems)

Total θvtrue θ̂εv MLE Rumm Win

1 1 0 0 0 0 0 0 0 0 2 -2.73 -2.79 does not exist -5.63 -5.99

1 1 0 0 0 0 0 0 0 0 2 -2.47 -2.79 does not exist -5.63 -5.99

0 1 1 0 0 0 0 0 0 0 2 -2.47 -2.79 does not exist -5.63 -5.99

1 0 1 0 0 0 0 0 0 0 2 -2.19 -2.79 does not exist -5.63 -5.99

1 1 0 0 0 0 0 0 0 0 2 -1.85 -2.79 does not exist -5.63 -5.99

0 1 1 0 0 0 0 0 0 0 2 -1.36 -2.79 does not exist -5.63 -5.99

1 1 1 0 0 0 0 0 0 0 3 -2.03 -1.90 does not exist -2.39 -3.94

1 1 1 1 0 0 0 0 0 0 4 -1.72 -1.00 does not exist -0.38 -1.74

1 1 1 1 1 0 0 0 0 0 5 -1.59 -0.07 does not exist 1.33 0.24

1 1 1 1 1 0 0 0 0 0 5 -1.27 -0.07 does not exist 1.33 0.24

1 1 1 1 1 0 0 0 0 0 5 -1.07 -0.07 does not exist 1.33 0.24

1 1 1 0 1 0 1 0 0 0 5 -0.78 -0.07 does not exist 1.33 0.24

1 1 1 1 1 0 0 0 0 0 5 -0.70 -0.07 does not exist 1.33 0.24

1 1 1 1 1 0 0 0 0 0 5 -0.13 -0.07 does not exist 1.33 0.24

1 1 1 1 1 0 0 0 0 0 5 0.43 -0.07 does not exist 1.33 0.24

1 1 1 1 1 0 0 0 0 0 5 0.50 -0.07 does not exist 1.33 0.24

1 1 1 1 1 1 0 0 0 0 6 1.29 0.87 does not exist 2.70 2.13

1 1 1 1 1 1 0 0 0 0 6 1.31 0.87 does not exist 2.70 2.13

1 1 1 1 1 0 1 0 0 0 6 1.48 0.87 does not exist 2.70 2.13

1 1 1 1 1 1 0 0 0 0 6 1.98 0.87 does not exist 2.70 2.13

1 1 1 0 1 1 1 0 0 0 6 2.23 0.87 does not exist 2.70 2.13

1 1 1 1 1 1 1 0 0 0 7 0.67 1.81 does not exist 3.90 3.80

1 1 1 1 1 1 1 0 0 0 7 0.76 1.81 does not exist 3.90 3.80

1 1 1 1 1 1 1 0 0 0 7 1.97 1.81 does not exist 3.90 3.80

1 1 1 1 1 1 1 0 0 0 7 2.39 1.81 does not exist 3.90 3.80

1 1 1 1 1 0 1 1 1 0 8 0.67 2.79 does not exist 5.32 5.65

1 1 1 1 1 1 0 1 0 1 8 1.05 2.79 does not exist 5.32 5.65

1 1 1 1 1 1 1 1 0 0 8 1.69 2.79 does not exist 5.32 5.65

1 1 1 1 1 1 1 1 0 0 8 2.63 2.79 does not exist 5.32 5.65

1 1 1 1 1 1 1 1 0 0 8 3.54 2.79 does not exist 5.32 5.65
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Table 5: Comparisons between ε-adjusted MLEs of item parameters β̂i
ε

(ε = 0.04) and
the corresponding estimates given by two estimation programs RUMM2020
(Rumm) and Winsteps (Win), with default settings (both these softwares have
convergence problems).

Item Total βitrue β̂i
ε

MLE C-JMLE Rumm Win

1 28 -4 -3.26 does not exist does not exist 6.56 7.22

2 29 -3.5 -3.75 does not exist does not exist 6.57 7.22

3 27 -2.5 -2.85 does not exist does not exist 4.49 4.77

4 21 -1.5 -1.04 does not exist does not exist 2.73 2.04

5 22 -0.5 -1.30 does not exist does not exist 2.81 2.40

6 12 0.5 0.89 does not exist does not exist -1.12 -2.05

7 11 1.5 1.09 does not exist does not exist 0.42 -1.35

8 5 2.5 2.46 does not exist does not exist -6.98 -6.02

9 1 3.5 3.88 does not exist does not exist -8.08 -7.57

10 1 4 3.88 does not exist does not exist -7.39 -6.67
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Appendix B: Simulation results

Table 6: Simulation comparing ε-adjusted MLE (for different values of ε), MLE, and
C-JMLE for the item parameters. True β parameters fixed and equally spaced.

k n dist β sd(θ) MLE (β) C-JMLE (β) β̂0.05 β̂0.08

5 200 eq(-2,2) 0.5 0.3168 0.0527 0.0269 0.0480

5 200 eq(-3,3) 0.5 1.3291 0.3032 0.0486 0.2168

5 500 eq(-2,2) 0.5 0.2613 0.0272 0.0124 0.0349

5 500 eq(-3,3) 0.5 0.9500 0.1459 0.0364 0.2131

5 1000 eq(-2,2) 0.5 0.2349 0.0162 0.0071 0.0319

5 1000 eq(-3,3) 0.5 0.9360 0.1353 0.0262 0.2083

k n dist β sd(θ) MLE (β) C-JMLE (β) β̂0.01 β̂0.02 β̂0.03

10 200 eq(-2,2) 0.7 0.0700 0.0453 0.0466 0.0327 0.0263

10 200 eq(-3,3) 0.7 0.1766 0.1062 0.0829 0.0420 0.0352

10 500 eq(-2,2) 0.7 0.0467 0.0247 0.0268 0.0155 0.0112

10 500 eq(-3,3) 0.7 0.1268 0.0653 0.0504 0.0196 0.0192

10 1000 eq(-2,2) 0.7 0.0373 0.0169 0.0190 0.0091 0.0059

10 1000 eq(-3,3) 0.7 0.1033 0.0472 0.0364 0.0112 0.0144

k n dist β sd(θ) MLE(β) C-JMLE(β) β̂0.01 β̂0.02 β̂0.03

20 200 eq(-2,2) 0.7 0.0396 0.0301 0.0311 0.0276 0.0284

20 200 eq(-3,3) 0.7 0.0654 0.0436 0.0397 0.0375 0.0518

20 500 eq(-2,2) 0.7 0.0190 0.0122 0.0129 0.0115 0.0141

20 500 eq(-3,3) 0.7 0.0373 0.0189 0.0176 0.0191 0.0360

20 1000 eq(-2,2) 0.7 0.0121 0.0060 0.0067 0.0059 0.0089

20 1000 eq(-3,3) 0.7 0.0272 0.0097 0.0092 0.0119 0.0294
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k n dist β sd(θ) MLE(β) C-JMLE(β) β̂0.01

30 300 eq(-2,2) 0.7 0.0233 0.0192 0.0187

30 300 eq(-3,3) 0.7 0.0422 0.0312 0.0266

30 500 eq(-2,2) 0.7 0.0158 0.0121 0.0118

30 500 eq(-3,3) 0.7 0.0256 0.0174 0.0155

30 1000 eq(-2,2) 0.7 0.0085 0.0057 0.0056

30 1000 eq(-3,3) 0.7 0.0157 0.0084 0.0077

Table 7: Simulation comparing ε-adjusted MLE (for different values of ε), MLE, and
C-JMLE for the item parameters. True β parameters randomly generated by
drawing from a uniform distribution.

k n dist β sd(θ) MLE(β) C-JMLE(β) β̂0.05 β̂0.08

5 200 U(-2,2) 0.5 0.1472 0.0304 0.0250 0.0257

5 200 U(-3,3) 0.5 0.8512 0.2229 0.0319 0.1001

5 500 U(-2,2) 0.5 0.1448 0.0172 0.0107 0.0160

5 500 U(-3,3) 0.5 0.4748 0.0761 0.0138 0.0660

5 1000 U(-2,2) 0.5 0.1144 0.0093 0.0069 0.0132

5 1000 U(-3,3) 0.5 0.4159 0.0550 0.0109 0.0680

k n dist β sd(θ) MLE(β) C-JMLE(β) β̂0.01 β̂0.02 β̂0.03

10 200 U(-2,2) 0.7 0.0538 0.0368 0.0388 0.0296 0.0251

10 200 U(-3,3) 0.7 0.1282 0.0791 0.0656 0.0377 0.0316

10 500 U(-2,2) 0.7 0.0364 0.0205 0.0224 0.0143 0.0110

10 500 U(-3,3) 0.7 0.0873 0.0451 0.0384 0.0169 0.0139

10 1000 U(-2,2) 0.7 0.0267 0.0124 0.0145 0.0075 0.0049

10 1000 U(-3,3) 0.7 0.0744 0.0349 0.0289 0.0110 0.0112
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k n dist β sd(θ) MLE(β) C-JMLE(β) β̂0.01 β̂0.02 β̂0.03

20 200 U(-2,2) 0.7 0.0375 0.0284 0.0296 0.0259 0.0259

20 200 U(-3,3) 0.7 0.0652 0.0441 0.0407 0.0365 0.0464

20 500 U(-2,2) 0.7 0.0165 0.0112 0.0118 0.0109 0.0131

20 500 U(-3,3) 0.7 0.0334 0.0172 0.0164 0.0163 0.0286

20 1000 U(-2,2) 0.7 0.0108 0.0055 0.0062 0.0055 0.0080

20 1000 U(-3,3) 0.7 0.0224 0.0087 0.0086 0.0104 0.0237

k n dist β sd(θ) MLE(β) C-JMLE(β) β̂0.01

30 300 U(-2,2) 0.7 0.0233 0.0192 0.0188

30 300 U(-3,3) 0.7 0.0370 0.0285 0.0251

30 500 U(-2,2) 0.7 0.0140 0.0110 0.0108

30 500 U(-3,3) 0.7 0.0264 0.0179 0.0156

30 1000 U(-2,2) 0.7 0.0079 0.00556 0.0054

30 1000 U(-3,3) 0.7 0.0156 0.00896 0.0080
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