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The Tucker3 model is one of the most widely used tools for factorial anal-
ysis of three-way data arrays. When orthogonal factors are extracted this
model can be seen as a three-way PCA (principal component analysis). The
Tucker3 model is characterized by extreme flexibility as it allows for the use
of a different number of factors in each mode and it yields non-unique results.
When this model is applied to vectors of non-negative values with a sum con-
straint all problems connected with the statistical analysis of compositions
must be taken into consideration. Like other standard statistical techniques,
this model cannot be directly applied. The aim of this paper is to present
the theory behind the Tucker3 model on compositional data and to describe
the TUCKALS3 algorithm.

keywords: Compositional data, simplex space, log-ratio transformation,
Tucker models, TUCKALS3.

1 Introduction

Compositional data (CoDa) appear as proportions, percentages, concentrations, abso-
lute and relative frequencies. They can often be found in many disciplines and in many
scientific fields. A compositional vector is a vector made up of non negative values
summing to a unit, or in general, to some fixed constant. The constant-sum constraint
that characterizes compositions is, however frequently disregarded or improperly incor-
porated into statistical modeling and a misleading interpretation of the results is given.
Due to these specifications, several difficulties arise when dealing with CoDa. The first
word of warning came already in 1897 from Karl Pearson who showed the dangers of
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underestimating spurious correlations. Several attempts were done in the course of lit-
erature to identify the negative bias issue and to find a solution to this problem so that
statistical modeling could reasonably be applied on compositional data.
Geometrically speaking, due to the constrained nature of compositional data, the sample
space for compositional vectors is a subset of real space, the simplex. The simplex has
been studied as an Euclidean linear vector space Pawlowsky-Glahn and Egozcue (2001)
and Billheimer et al. (2001). In this paper, most of the elements that were introduced
by Aitchison in the 1980s, such as perturbation and powering operations and orthogonal
log-contrasts, have been organized into a systematic and coherent mathematical scheme.
Recently, additional tools for the representation of compositions and their exploratory
analysis have been developed Egozcue and Pawlowsky-Glahn (2005), Pawlowsky-Glahn
and Egozcue (2011), Egozcue et al. (2003) and Egozcue et al. (2011). Aitchison showed
how a statistical model applied on compositions will yield consistent results only if three
conditions are fulfilled: scale invariance, permutation-invariance and sub-compositional
coherence. Based on these assumptions he proposed to use log-ratio transformations to
preprocess CoDa before conducting any statistical analysis. Through this transforma-
tion, a direct association between the simplex and the real space is found. This way it is
possible to work in real space, where it is easier, and later, through the inverse function,
the results can be taken back into simplex space for a correct interpretation.
Compositional data can be arranged into three-way matrices when, for example, I com-
positions of J parts have been collected in K occasions. When dealing with three-way
data it is possible to apply two-way analysis techniques such as principal component
analysis (PCA), but this generally resolves in loss of information due to the fact that
two of the three modes are combined together. Therefore, PCA for CoDa, proposed by
Aitchison (1982), is not adequate to analyze CoDa when arranged in three-way arrays.
In recent statistical literature other papers have argued the use of three-mode analysis
such as the PARAFAC/CANDECOMP, the Tucker3 and the weighted PCA models for
studying three-way data, for more details see Gallo (2013a), Gallo (2013b) and Gallo
and Buccianti (2013).
The purpose of this work is to provide a procedure to analyze compositions by Tucker3.
Specifically, after presenting a set of convenient symbols, some basic concepts of com-
positional data analysis have been adapted for compositions arranged into a three-way
array. Finally a procedure based on the least squares algorithm, known as TUCKALS3,
for three-way compositional data analysis is given in point format.

2 Notations and elements of simplicial geometry

2.1 Three-way array definitions

The notation used in this paper is based on Gallo (2012) and Smilde et al. (2005).
Boldface underlined letters designate three-way arrays; two-way arrays (matrices) are
in boldface uppercase characters; vectors are in boldface lowercase characters (always
a row vector) and scalars are in lowercase characters. Each three-way array can be
seen as a collection of matrices, called slices. These slices, which are frontal, vertical
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and horizontal, can be concatenated between them obtaining several kinds of matricized
three-way arrays.

A matrix given by concatenating frontal slices is indicated in boldface uppercase char-
acters with a subscript A. A matrix given by concatenating vertical slices is indicated in
boldface uppercase characters with a subscript B. And finally, a matrix given by concate-
nating horizontal slices is indicated in boldface uppercase characters with a subscript
C. For example, let V (I xJ xK ) be a three-way array with I objects or compositions, J
variables or parts of composition and K occasions. There are three types of slices, (I xJ )
frontal slices Vk with k=1,...,K, (I xK ) vertical slices Vj with j=1,...,J, and (K xJ ) hori-
zontal slices Vi with i=1,...,I. These slices can be concatenated between them obtaining
the following matricization of the three-way array: VA (I xJK ) VB (J xIK ) VC (K xJI ),
i.e. VA=[V1 |...|Vk |...|VK ], VB=[V1

t |...|Vk
t |...|VK

t ] and VC=[V1 |...|Vi |...|VI ]. In
addition, the three-way array V can be broken up into vectors, called fibers. The three
different types of fibers are referred to as rows, columns and tubes. Thus, V can be
broken up into IK rows vik , JK columns vjk , IJ tubes vij , with dimension (1 xJ ), (1 xI )
and (1 xK ), respectively.

Traditionally, when a three-way array is unfolded into a matrix, all the scores of a
subject are arranged into a sequence of records in order to create a wide combination-
mode matrix, e.g., the ith row of VA is vi=[vi1 |...|vik |...|viK ]. Each slice of a three-way
array can be converted into a column vector by vec-operator Kiers (2000) and Smilde
et al. (2005). Thus, it is possible to arrange all the column vectors underneath each
other. For example, let Vi be the ith horizontal slice, Vec(Vi

t)=vi=[vi1 |...|vik |...|viK ],
which is the ith row of VA.

2.2 Basic concepts

Let S k
J be the simplex space with dimension J-1, defined as S k

J={v•k= (v•1k ,...,v•Jk ):
v•1k> 0,...,v•Jk> 0;

∑
jv•jk=κ}, where κ is a given positive constant, which is usually 1

or 100, depending on whether the variables are measured in part per unit or as percent-
ages, respectively. The typical simplex element, v•k∈S k

J , is called composition, and its
components v•jk (j=1,...,J ) are called parts of v•k .

Since absolute values of compositional data are not relevant, as they only carry relative
information, we can scale any composition so that the fixed total of its components
equals κ. This can indeed be achieved through an operator that projects a vector with
all positive elements from real to a simplex space. In other words, let Ṽ be a three-way
array with all positive elements and ṽ•k a row of the kth frontal slice of Ṽ, its closure
is defined as v•k=C(ṽ•k )= (κṽ•1k/

∑
j ṽ•jk ,...,κṽ•Jk/

∑
j ṽ•jk ). The operator C is called

the κ-closure operator.

The closure operation implies that two rows of the kth frontal slice of Ṽ, ṽ•k ,ṽ◦k∈Rk
J ,

are compositionally equivalent if C(ṽ•k )=C(ṽ◦k ) or, in other words, if there exists a pos-
itive scalar λ∈R+

J so that ṽ•k=λṽ◦k . In this case we say that ṽ•k and ṽ◦k belong to
the same compositional class. These equivalent vectors are connected to the origin of
R+

J by the same ray. The intersection point of this ray with the κ simplex is represen-
tative of that compositional class. Given all these specifications concerning the nature
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of compositional data, a statistical method applied on compositions will yield consistent
results only if three conditions are fulfilled: scale invariance, permutation-invariance
and sub-compositional coherence. A function fulfills the scale invariance condition if,
for any real positive value of λ and any composition v•k∈S k

J we have f (v•k )=f (λv•k )
while it is permutation-invariant if rearranging the parts in the composition does not
modify the outcome. Finally the function must also be sub-compositionally coherent
which, from a geometric stand point, implies that if we have a C part sub-composition
v•k

s=(v•sk ,...,v•sk ) of a starting J part composition v•k this sub-composition (S<J )
must behave as an orthogonal projection of the corresponding whole composition.

The Euclidean geometric structure has proven unfit to guarantee consistent results
when applied to compositions as the unit-simplex is characterized by own structure
known as Aitchison geometry. At the base of this geometry there are the two opera-
tions of perturbation and powering which give the simplex a vector space structure. The
perturbation operation transforms compositions the same way the translation operation
would in real space and it can be used to measure differences between compositions. The
perturbation between two compositions v•k ,v◦k∈S k

J results in a new composition v∗k
defined by: v∗k=v•k⊕v◦k= C(v•1kv◦1k ,v•2kv◦2k ,...,v•Jkv◦Jk ). The operation of power-
ing is instead analogous to multiplication by a scalar and it can be defined for any α∈R+

and any composition v•k∈S k
J as it follows: α�v•kC(v•1k

α,v•2k
α,...,v•Jk

α). After defin-
ing the perturbation operation and the power transformation, the simplex S k

J can be
considered a vector space with dimension J-1 on R. These operations are indeed equiv-
alent to translation and scalar multiplication in real space as the following properties
apply.

Property 1: Let v•k ,v◦k ,v+k be compositions in S k
J and α∈R+. Then

• (associative) (v•k⊕v◦k )⊕v+k =v•k⊕(v◦k⊕v+k );

• (commutative) v•k⊕v◦k=v◦k⊕v•k ;

• (opposite element) v•k⊕(-1�v◦k )=η;

• (neutral element) η=C(1,1,...,1)=(1/J,1/J,...,1/J );

• (distributive) (α�v•k )⊕(α�v◦k )=α�(v•k⊕v◦k );

• (unit) (1�v•k )=v•k .

Note that formally we handle the operations ⊕ and � in the simplex the same way
we handle standard vector operations of addition, subtraction and multiplication in real
space. All the fibers of a three-way array Ṽ can be transformed into compositions by
the closure operator C, but it would really only make sense to do this for the objects.
Thus, when it is applied to a row of Ṽk (k=1,...,K ), it then defines a transformation
Rk

J→S k
J with S k

J as previously defined. Afterwards, we proceed to indicate the IK
rows of three-way array as compositions. Thus, for each frontal slice Vk (k=1,...,K ) we
have I compositions with the relative sample space S k

J (k=1,...,K ). Therefore, in each
simplex S k

J there are I points with coordinates v1k ...vik ...vIk . In three-way arrays, each
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object is observed on several occasions, in other words the data of the ith object are
arranged in the horizontal slice Ṽi and often the values that the object assumes on differ-
ent occasions are plotted in the same space as a trajectory. In this case, for each object,
K points are plotted and linked between them in the same real space R+

J . In the same
way, if the rows of a horizontal slice are compositions the sample space can be defined
as SJ and for the representation of each composition K points are linked between them
to obtain the trajectory for each composition through the K occasions. On the other
hand, each object observed on several occasions is often summarized in real space with
only one point. In this case, by vec-operator, vec( . ), horizontal slices can be vectored.
This operator can be applied to the horizontal slices after the closure operator. Thus, it
is possible to define the following vector: vi=C(Ṽi

t)= (κṽi11/
∑

j ṽij1 ,...,κṽiJ1/
∑

j ṽij1
|...|κṽi1K /

∑
j ṽijK ,...,κṽiJK /

∑
j ṽijK )=[vi1 |...|vik |...|viK ]. For each horizontal slice Ṽi ,

vec(C( . )) defines the transformation onto simplex space S k
1x...x S k

K=
∏K
k=1 S k

J=SJK .

In accordance with perturbation and powering definitions, it is possible to verify the
following properties for the ternary (SJK , ⊕,�).

Property 2: Let vi ,vi’ ,vi” be compositions in SJK and α∈R+. Then

• (associative) (vi⊕vi’ )⊕vi” =vi⊕(vi’⊕vi”);

• (commutative) vi⊕vi’=vi’⊕vi ;

• (opposite element) vi⊕(-1�vi’ )=η
*;

• (neutral element) η*=(1/J,...,1/J |...|1/J,...,1/J );

• (distributive) (α�vi)⊕(α�vi’ )=α�(vi⊕vi’ );

• (unit) (1�vi)=(vi).

Therefore in the simplex space SJK we use the same operations ⊕ and � of SK
J .

2.3 From simplex to real space

Studying compositional data within the framework of their sample space implies having
to completely rethink any statistical tool one wishes to apply. Alternatively, the constant
sum constraint can be removed with an appropriate transformation of compositional
data so that it is possible to work in real space and standard unconstrained multivariate
techniques can be applied.

As compositional data only carry relative information, this can be achieved considering
logarithms of ratios, known as log-ratios, which allow for a bi-univocal correspondence
between simplex and real space representation of data. We can briefly recall the formulas
for the four most used log-ratio transformations proposed in literature: pairwise log-ratio
(plr), additive log-ratio (alr), centered log-ratio (clr) and isometric log-ratio (ilr) where
the plr, alr and clr were introduced by Aitchison (1982) and Aitchison (1986), while the
ilr was introduced by Egozcue et al. (2003). Unfortunately, the alr transformation has
the inconvenient of not being invariant under permutation of components therefore some
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statistical procedure may fail. For this reason it will not be taken into consideration in
this work (for more detail see Egozcue et al. (2011)).

A pairwise transformation applied to a vector vik gives a new vector with (J-1 )J/2
pairwise log-ratios, where the generic element is log(v ijk/v ij’k ) with (j<j’ ). The centered
and isometric transformations applied to the same vector vik can be defined as:

• clr(vik )=(log(v i1k/g(vik )),...,log(v ijk/g(vik )),...,log(v iJk/g(vik ))) with dimension

J and where g(vik )=
∏J
j=1...Jv ijk ;

• ilr(vik )=(ilr(v i1k ,...,ilr(v ijk ,...,ilr(v i(J-1)k )), with dimension (J-1 ) and generic ele-

ment ilr(v ijk )=((J-j )/(J-j+1 ))1/2log(v ijk/(
∏J
h=j+1 vihk)

1/(J-j)).

These transformations can be used to define a metric structure in the simplex. The inner
product, norm and distance for the clr representation of compositions in SK

J are

• <vik ,vi’k>a=
∑J

j=1log(v ijk/g(vik ))*log(v i’jk/g(vi’k ));

• (||vik ||a=(
∑J

j=1log(v ijk/g(vik ))2)1/2;

• d(vik ,vi’k )a= (
∑J

j=1(log(v ijk/g(vik ))-log(v i’jk/g(vi’k )))2)1/2.

where <.,.>a, ||.||a and d(.,.)a denote the Aitchison inner product, norm and distance.
With these properties, we have that the clr is an isometric transformation from simplex
to real space. The same can be said for the plr and ilr transformations.

It is, now possible to define the pairwise, centered and isometric transformations for
a vector vi . These transformations can be defined easily by the following formulations:

• pl̂r(vi)=( plr(vi1 ),...,plr(vik ),...,plr(viK ));

• cl̂r(vi)=( clr(vi1 ),...,clr(vik ),...,clr(viK ));

• il̂r(vi)=( ilr(vi1 ),...,ilr(vik ),...,ilr(viK )).

Accordingly, the Aitchison geometry on the simplex SK
J can be used for SJK as well.

The listed transformations are all viable tools for working with compositional data as
long as we bear in mind the properties of that specific transformation when interpreting
results. Choosing which to apply depends largely on the available data and on the kind
of analysis one wishes to perform. Due to the asymmetric property of the alr it is hardly
applied when conducting a multidimensional analysis. Therefore, it is not discussed in
this work.

3 Three-way modeling by Tucker3 for CoDa

The Tucker3 model is one of the most basic multi-way models used in psychometrics
and chemometrics Tucker (1966). The model is defined by the decomposition of a three-
way array into a three-way core array and three two-way loadings matrices. In scalar
notation, the Tucker3 model can be written as:
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vijk =

P∑
p=1

Q∑
q=1

R∑
r=1

gpqr(aipbjqckr) + eijk (1)

where e ijk is an element of the residual array E (I xJ xK ); a ip , bjq , ckr are the typical
elements of the loadings matrices A (I xP), B (J xQ) and C (K xR); and gpqr is the
typical element of the core-array G (PxQxR), where the notation (P,Q,R) is used to
indicate that the model has P, Q and R extracted factors for the first, the second and
the third mode respectively, for full details see Kiers (2000) and Kroonenberg (2008).

According to the strategy proposed by Aitchison (1986), in order to analyze com-
positional data we have to move from simplex space to real space and then, after the
multidimensional analysis has been carried out, move back to the simplex for interpre-
tation of results. To achieve this purpose, the logarithmic transformations discussed in
Section 2.3 can be applied to the three-way array V. The first step is to work out L
(I xJ xK ), an array with typical element log(v ijk ), Lk indicates the kth frontal slice of this
array. Thus, the kth frontal slice of the clr can be written as LkPJ

⊥, where PJ
⊥=(IJ -

1J1J
t/J ) is the symmetric and idempotent centering matrix, IJ is (J xJ ) identity matrix

and 1 is a I -dimensional vector of ones. The kth frontal slice of the plr can be written
as LkΞ, where Ξ is a (J xJ (J -1)/2) matrix with 0s in each column except for a 1 and -1
in two rows, since ΞΞt=JPJ

⊥. Finally, the kth frontal slice of the ilr can be written as
LkPJ

⊥Ψ where ΨtΨ=IJ-1 and ΨΨt=(IJ -1k1k
t/J ). Moreover, to ensure that log-ratios

are centered respect to column means each frontal slice is premultiplied by the symmet-
ric and idempotent centering matrix PI

⊥=(II -1I1I
t/I ), where II is the (I xI ) identity

matrix and 1I is a I -dimensional vector of ones. Thus, the kth frontal slice of the clr
transformation is Yk=PI

⊥LkPJ
⊥, while the columnwise-centered kth frontal slice for

plr and ilr are Ŷk=PI
⊥LkΞ and Y̆k= PI

⊥LkPJ
⊥Ψ, respectively.

In case of centered log-ratio transformation, Equation 1, in matrix notation, can be
written:

YA = AGA(C⊗B)t + EA (2)

where ⊗ is the Kronecher product and YA=[Y1 |...|Yk |...|YK ]. In case of CoDa,
the loadings matrices for the first and second mode should have a column sum equal
to zero or in other words they must be centered, in mathematical term 1̃IA=0̃P and
1̃JB=0̃Q (where 0̃P and 0̃Q are vectors of zero with P - and Q- dimensions, respectively).
Therefore, the Tucker3 model for CoDa has the following loss function:

min
1̃IA=0̃P,1̃JB=0̃Q,C,G

‖YA −AGA(C⊗B)t‖2 (3)

In Equation 3 the constrained 1̃IA=0̃P and 1̃JB=0̃Q will automatically be respected.
In other words, the double-centering of each Yk (k=1,...,K ) assures that the loadings
matrices A and B will always be centered. Therefore, the additional constraints do not
cause any problem because traditional algorithms, as such TUCKALS3 can be applied
for centered log-ratio data. This algorithm fits the model in a least squares sense with
orthonormal loadings vectors.
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Gallo (2013b) has shown that the loadings matrices of clr preprocessed data are
strongly linked with the correspondent plr and ilr loadings matrices. In detail, the
loadings matrix of clr data for the first mode is equivalent to the loadings matrix for
the first mode obtained from plr and ilr transformed data. The same relationship exists
among the loadings matrices of the third mode. On the other hand, let B̂ and B̆ be the
loadings matrices for the second mode for plr and ilr preprocessed data, respectively, it
can be shown that B̂=ΞtB and B̆=ΨtB, where the matrices Ξ and Ψ have been previ-
ously defined. Thus, Tucker3 results on pairwise log-ratio data can be obtained by the
analysis of the smaller three-way arrays of centered log-ratio data. In the same way, it
is possible to obtain Tucker3 results on isometric log-ratio data by the loadings matrices
of the clr preprocessed data.
To summarize, in order to find the final parameter estimated with orthogonal load-
ings, the more efficient TUCKALS3 can be used for CoDa too Smilde et al. (2005). A
schematic overview of the proposed method can be found in Table 1, where (P, Q, R)
are the sought dimensions for the three mode of a three-way compositional data set V
(I xJ xK ).

Table 1: A schematic overview of Tucker3 analysis for compositions.

a) Preprocessing

For each frontal slice k=1,...,K

- Logarithmic transformation is applied on each element of Vk , the results are in Lk

- Create PI
⊥ and PJ

⊥

- Yk is given by PI
⊥YkPJ

⊥

b) Do TUCKALS3 algorithm

1. Initialize B and C (with the first Q and R left singular vector of YB and YC )

2. A equal first P left singular vectors of YA(C⊗B)

3. B equal first Q left singular vectors of YB (C⊗A)

4. C equal first R left singular vectors of YC (B⊗A)

5. Repeat steps 2-4 until relative changes are small

6. GA=AtYA(C⊗B)

c) Get results for plr and ilr

- Create Ξ and Ψ

- B̂ and B̆ are given by ΞB and ΨtB

- A, B and GA are the same for the three log-ratio transformations
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4 Conclusions

Standard statistical methodology was traditionally developed on real space. In case of
compositional data the sample space has a different algebraic and geometric structure
know as simplex. Following Aitchisons approach it is however possible to move compo-
sitions from simplex space to real space by using log-ratio transformations. After one of
these transformations has been used, the application of standard statistical techniques
is indeed possible and algorithms proposed in statistical literature for fitting the param-
eters can be used for compositional data too. Finally, it is possible to return to the
simplex using the inverse log-ratio transformation.

Following this approach, a schematic overview of the TUCKALS3 algorithm for study
CoDa was given but not much has been said about interpretation of results nor about
any of the plotting procedures used for visual representations of Tucker3 results, see
for more details on these topics Gallo (2013a), Gallo (2013b) and Gallo and Buccianti
(2013).

An alternative is working on orthonormal coordinates Barcelo-Vidal et al. (2011). The
principle of working on coordinates described above implies that all standard methods
can be applied to coordinates of any composition with respect to an orthonormal basis.
These two alternative approaches are essentially the same. In this work the general-
ization for three-way arrays of the theoretical background can be used for working on
orthonormal coordinates too.
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