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In this study, the techniques of ridge regression model as alternative to
the classical ordinary least square (OLS) method in the presence of corre-
lated predictors were investigated. One of the basic steps for fitting efficient
ridge regression models require that the predictor variables be scaled to unit
lengths or to have zero means and unit standard deviations prior to param-
eters’ estimations. This was meant to achieve stable and efficient estimates
of the parameters in the presence of multicollinearity in the data. However,
despite the benefits of this variable transformation on ridge estimators, many
published works on ridge regression practically ignored it in their parameters’
estimations. This work therefore examined the impacts of scaled collinear
predictor variables on ridge regression estimators. Various results from sim-
ulation studies underscored the practical importance of scaling the predictor
variables while fitting ridge regression models. A real life data set on import
activities in the French economy was employed to validate the results from
the simulation studies.

keywords: Ridge regression, orthogonality, shrinkage parameter, scaling,
ordinary least squares, mean square error

1 Introduction

The simplest but efficient way to fit (multiple) linear regression models is through the
ordinary least squares (OLS) method. This is particularly true when all the necessary
assumptions underlying its application are met by the data. One of these assumptions
required the predictor variables in the regression models to be purely uncorrelated, see
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Myers (1986).
Consider a multiple linear regression model of the form

Y = Xβ + ε (1)

where Y is the n× 1 vector of responses, X is the n× p matrix of predictor variables, β
is the p× 1 vector of the regression coefficients while ε is the random noise of the model
that is assumed to have Gaussian density with zero mean and a constant variance σ2.
The goal of the OLS is to minimize the error sum of squares ε′ε = (Y− βX)′(Y− βX)
to yield the OLS estimators

β̂ = (X′X)−1(X′Y) (2)

If some of the predictor variables in matrix X are correlated, the OLS estimators in (2)
become less efficient and unstable, thereby rendering the resulting regression model un-
suitable for meaningful inference. However, it is not uncommon in observational studies
to find some of the X predictors to be correlated, see Yahya et al (2008). The problem
of collinear predictors only becomes severe on OLS estimators when such correlations go
beyond a reasonable tolerable range of values as proposed by Yahya et al (2008).
Among the earlier methods proposed in the literature to remedy the adverse effects of
collinear predictors on OLS estimators is the ridge regression, see Hoerl and Kernard
(1970a); Hoerl and Kernard (1970b). The ridge regression is a regression technique that
allows for biased estimation of regression parameters that are quite close to the true val-
ues in the presence of correlated predictor variables in the model. All the various forms
of the ridge regression techniques were meant to shrink the least square coefficients to-
wards the origin of the parameter space and consequently reduce the mean square errors
of estimates. As a result, the ridge estimators mostly yield better mean square errors
than the classical OLS estimators, see Dorugade and Kashid (2010).
One of the basic procedures in ridge regression estimation, as adopted in many studies,
required that the predictor variables (columns of matrix X) be scaled to unit lengths or
with zero means and unit standard deviations, seeLawless and Wang (1976); Mardikyan
and Cetin (2008). This is meant to avoid over-fitting (fitting to noise in the data rather
than the signal) and achieve stable estimates of the ridge regression parameters, see
Cannon (2009).
Despite the benefits of scaling of the predictor matrix X in ridge regression estimation
as demonstrated in many works, see Hoerl et al (1985); Wethril (1986); Fearn (1993);
Khalaf and Shukur (2005) and Mardikyan and Cetin (2008), this desirable step was
blatantly ignored in a number of studies where practical applications of ridge regression
methods were presented, see Longley (1976); Myers (1986); Chatterjee and Hadi (2006).
It was against this background that this present work is motivated to illustrate, with
clear examples, the fundamental basis of scaling the predictor matrix in ridge regression
estimation. This is aimed to guide the researchers and students alike in their future
applications of the ridge regression methods.
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2 Materials and Methods

2.1 Brief Overview of Ridge Regression Method

Consider the multiple linear regression model given by equation (3). As earlier remarked,
if some pairs of predictor variables in the columns of the design matrix X are correlated,
the OLS estimator in (2) becomes very unstable and less efficient resulting into high es-
timates of the mean square errors. To remedy this, Hoerl and Kernard (1970a) proposed
an alternative estimator by adding a constant value k to the diagonal of X′X matrix in
the OLS estimator (2). This resulted into the ridge estimator of the form

β̂∗ = (X′X + kI)−1(X′Y); k > 0 (3)

where k is the ridge penalty (shrinkage) parameter and I is a p× p identity matrix. The
value of k > 0 was meant to shrink the magnitude of the estimated regression coefficients
which would eventually lead to fewer effective model parameters, seeCannon (2009). It
should be noted that the ridge estimator in (3) reduces to OLS estimator in (2) when
k = 0.

2.2 Assessment of Model’s Performance

The performance of the ridge regression estimators (3) can be assessed through the
classical mean square error (MSE) of the estimated regression coefficients given by

MSE1 = E(β̂∗ − β)(β̂∗ − β)′

⇒ MSE1 = 1
p

∑p
i=1(β̂i

∗ − βi)2
(4)

However, Hoerl and Kernard (1970a); Hoerl and Kernard (1970b) proposed another form
of MSE to assess the performance of ridge estimators (3). This MSE is given by

MSE2 = σ2
p∑
i=1

λi
(λi + k)2

+ k2
p∑
i=1

α̂i
2

(λi + k)2
(5)

Here, α̂ = P′β̂∗, where P is the p × p matrix of eigenvectors satisfying X′X = P ∧ P′

with PP′ = I and α̂ = (α̂1, . . . , α̂p). Matrix ∧ is a diagonal matrix of the eigenvalues
λ1, . . . , λp with λ1 ≥ . . . ≥ λp.

The first component σ2
∑p

i=1

λi
(λi + k)2

in (5) represents the variance of all the estimated

regression coefficients while the second component represents the corresponding bias
square. The whole idea is to develop a scheme that selects the shrinkage parameter
k such that decrease in variance does not increase the bias of the ridge estimators.
However, the mean square error for ridge estimators, MSE2 in (5) reduces to that of the
OLS when the shrinkage parameter k = 0.
A major difference between the two mean square errors in (4) and (5) is that the MSE1

in (4) assumes that the true parameter values in vector β are known prior to model’s
estimation and these are simply being compared with their corresponding estimates in



346 Yahya W.B., Olaifa J.B.

parameter vector β̂∗. In the contrary however, the computation of MSE2 in (5) only
requires the estimated regression parameter vector β̂∗ along with the eigenvalues λi which
are all obtained from the sample data. In a nutshell, MSE1 is only suitable to assess
the performance of the (ridge) regression estimators with simulated data in which the
true parameter values of the model in vector β have been determined a priori, whereas,
MSE2 can be used to assess the performance of (ridge) estimators with both simulated
and real life data sets.

2.3 The Choice of Shrinkage Parameter k

One of the challenges of the ridge regression in the literature is how to determine the
optimal value of the shrinkage (tuning) parameter k that would yield the most efficient
ridge regression models, see Hoerl et al (1975);Khalaf and Shukur (2005); Dorugade and
Kashid (2010). When k = 0, the ridge estimator (3) reduces to the OLS estimator
(2). According to Hoerl and Kernard (1970a); Hoerl and Kernard (1970b), and Faraway
(2002), the reasonable values of the tuning parameter k lies within the interval (0, 1)
especially when each variable column in predictor matrix X is scaled to unit length.
In the present study therefore, the best value of k within the interval (0, 1) that yields
the most efficient ridge parameter estimates in any given data set is determined by
cross-validation search using model’s assessment criteria of MSE1 or MSE2. By this
cross-validation search criteria, the value of k1 or k2 (k1, k2 ∈ k) within the interval
(0, 1), that yielded the least estimated mean square error MSE1 in (4) or MSE2 in (5)
out of a number of such estimates obtained for all the possible values of k in the interval
(0, 1) becomes the best tuning parameter value for the ridge regression estimators for
such data. Based on these two criteria for determining the best value of k, two forms
of ridge regression estimators RR1 or RR2, as used in this work, evolved depending on
whether MSE1 or MSE2 has been employed to determine the best shrinkage parameter
k1 or k2 respectively, k1, k2 ∈ k.

2.4 Centering and Scaling of Correlated Predictor Variables

As earlier remarked, one of the major steps in ridge regression estimation required that
the predictor variables be centered to have zero means and scaled to unit lengths, see
Mardikyan and Cetin (2008). Two types of scaling are suggested in the literature,
seeHoerl et al (1975). The first one is the unit length scaling that ensures that each
column in predictor matrix X has a zero mean and unit length. The statistic is given by

X∗ij =
xij − x̃j√∑
(xij − x̃j)2

(6)

for i = 1, . . . , p and j = 1, . . . , n.
The second scaling method standardizes each column in the predictor matrix X to have
zero mean and a unit standard deviation. Its statistic is given by

Z∗ij =
xij − x̃j√∑ (xij−x̃j)2

n−1

(7)



Electronic Journal of Applied Statistical Analysis 347

Whenever the scaling statistic (6) is used, the resulting X′X matrix becomes the corre-
lation matrix of the predictor variables. Nonetheless, both methods of scaling have been
found to perform excellently well. However, statistic (7) as implemented in R statistical
package (www.cran.org) is adopted in this study.

2.5 Simulation Studies

The purpose of the simulation work is to compare the relative performance of OLS and
ridge estimators with respect to their MSEs when the predictor matrix X is i. scaled or
standardized and ii. unscaled.
Data were simulated in line with multiple linear regression model given in (1). A n× p
data matrix of p = 6 predictor variables x1, . . . , x6 each of size n = 20 was simulated
from multivariate Gaussian density with mean vector µ = (102, 390, 310, 260, 115, 1600).
In order to ensure some form of dependency among the pairs of predictor variables,
the correlation matrix ρii′ in ? was adapted to simulate the covariance structures σii′

between the pairs of predictors xi and xi′ , i 6= i
′

= 1, . . . , 6. This is given by

ρii′ =



1.0000

0.9916 1.0000

0.6206 06043 1.0000

0.4647 0.4464 -0.1774 1.0000

0.9792 0.9911 0.6866 0.3644 1.0000

0.9911 0.9953 0.6683 0.4172 0.9940 1.0000


(8)

This finally yielded the following variance-covariance matrix
∑

as used for simulation.

∑
=



125.00

1084.32 10555.00

957.00 8711.29 8000.00

698.99 6516.83 5516.08 4250.00

243.00 2226.07 1946.00 1403.80 500.00

261.62 2468.27 2189.11 1527.12 542.25 625.00


(9)

Finally, the response variable Yi was simulated from the relationship

Yi = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 + εi (10)

where the values in the parameter vector β′ = (β0, β1, β2, β3, β4, β5, β6) were respectively
set at (25, 10, 15, 60, 40, 35, 20) while εi ∼ IIDN(0, σ2ε ) is the error term of the model
with σ2ε fixed at 25. Therefore, all the results and discussions on simulation studies are
based on the regression model in (10).
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3 Results

The results of the simulations and applications of OLS and ridge estimators on published
life data set are presented in this section.

3.1 Simulation Results

In order to have a quick overview of the impacts of scaling correlated predictor vari-
ables in linear regression estimation, we provide in Table 1, the OLS estimates of the
regression parameters for model (10) using the simulated six predictor variables which
were all scaled to have zero means and unit standard deviations according to statistic
(7). Also, the OLS estimates of the model’s parameters using the original (unscaled)
simulated predictors were equally reported in the table. Both results were provided for
ten models over ten different simulated data sets.
It is observed from the regression results in Table 1 that, except for the intercept pa-
rameter β0, the OLS estimates of the slope parameters β1, . . . , β6 in all the ten models
are apparently stable using the raw (unscaled) values of the predictor variables given the
inherent multicollinearity structure in the data. Thus, the instability of regression pa-
rameters which is one of the major consequences of multicollinearity is more pronounced
on the intercept parameters than on the slope parameters in OLS estimation.
Using the raw values of the predictor variables x1, . . . , x6, the OLS estimates of β0 in
the ten models in Table 1 were grossly unstable ranging from −805.081 to 2257.230
with a variance of 1025844. Whereas, using the standardized values of the predictor
variables, the OLS estimates of β0 in all the models were apparently stable and very
close to the true value of 25. Here, the estimated β̂0 in all the ten models fall within
the interval [23.872, 25.633] with a relatively small variance of 0.4. These results sim-
ply confirmed that scaling of the predictor variables helps to stabilize the estimates of
the intercept parameter in multiple linear regression modelling in the presence of highly
correlated predictors as earlier posited by Marquardt and Snee (1975); Bradly and Sri-
vastava (1997), even with OLS estimators.
Another important feature observed in the results in Table 1 is that, the OLS estimates
of the slope parameters β3 and β4 of pair of orthogonal (uncorrelated) predictor variables
x3 and x4 are apparently stable across the ten models using either the raw or standard-
ized values of the predictors for estimation.
The collinear structure between x3 and x4 in all the simulated data was set at corre-

lation value, ρx3,x4 of − 0.1774 which is not significant at 5% (p ≈ 0.4), an indication
that the predictor variables x3 and x4 are purely uncorrelated. In all the ten models
in Table 1, the OLS estimates of the slope parameters β3 and β4 of the two orthogonal
predictors x3 and x4 are very close to their true values of 60 and 40 respectively, even
in the presence of other highly correlated predictor variables in the models.
Without loss of generality, it can be deduced from the results in Table 1 that in the pres-
ence of multicollinearity, scaling of predictor variables only helps to stabilize the OLS
estimates of the intercept parameters while the slope parameters, especially those of the
correlated predictors would be grossly unstable and inefficient for meaningful inferences.
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Table 1: The OLS estimates of the regression parameters for ten simulated data sets using

scaled and original (unscaled) predictor variables. It is observed that the estimates of the

intercept parameter β0 in all the models were stable and closer to their true values using

the scaled (standardized) predictor variables than their estimated values using the original

(unscaled) predictor variables.

Model Predictor β0 = 25 β1 = 10 β2 = 15 β3 = 60 β4 = 40 β5 = 35 β6 = 20

Variable

1 Unscaled −694.696 10.531 14.749 59.953 39.982 35.527 20.452

Scaled 25.556 15.900 −11.306 55.700 38.952 47.423 31.724

2 Unscaled −151.070 12.254 14.602 59.950 39.964 35.852 20.017

Scaled 24.123 28.083 −13.955 55.643 38.226 49.059 20.319

3 Unscaled −576.140 9.675 15.049 60.020 40.011 34.422 20.421

Scaled 25.633 6.603 19.506 62.045 40.918 22.829 29.645

4 Unscaled −805.081 10.239 14.956 59.945 39.950 34.688 20.556

Scaled 25.424 12.144 11.342 55.045 36.762 29.010 31.834

5 Unscaled 364.417 10.173 15.030 59.982 39.988 35.125 19.766

Scaled 24.324 11.979 18.146 58.578 39.194 37.880 14.045

6 Unscaled 1282.708 10.083 15.147 60.018 39.993 35.170 19.158

Scaled 24.702 10.984 31.297 61.586 39.572 39.172 −2.815

7 Unscaled 2257.230 9.084 15.705 60.104 40.055 33.532 18.567

Scaled 23.978 −0.820 90.060 69.707 42.537 0.790 −17.409

8 Unscaled 836.714 9.638 15.085 60.038 40.039 35.222 19.465

Scaled 24.747 6.589 22.419 63.390 42.537 39.440 8.258

9 Unscaled 34.618 8.536 15.273 60.042 40.013 34.258 20.063

Scaled 23.872 −6.673 42.642 64.709 40.870 18.190 21.611

10 Unscaled −713.653 10.989 14.593 59.961 40.012 35.984 20.432

Scaled 25.013 23.776 −37.354 56.298 41.011 61.975 33.469
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One of the alternative efficient techniques to estimate multiple linear regression models
in the presence of multicollinearity is offered by the ridge regression estimators, see EI-
Dereny and Rashwan (2011) and Hoerl et al (1975), the results of which are presented
in Table 2 for ridge regression type RR1 and RR2 as earlier described in Section 2.2
for various simulated data according to the simulation scheme in Section 4.1. For each
simulated data set, the regression results of the OLS estimators are also presented in
the table. However, regression results of OLS, RR1 and RR2 estimators for ten different
simulated data sets are presented in Table 2 due to space. The three regression types
were fitted using the scaled predictor variables according to (7).
For each simulated data, the best shrinkage parameter values k1 and k2 for ridge regres-
sion estimators RR1 and RR2 were determined by cross-validation from 1000 possible
values of the shrinkage parameter k within the interval (0, 1) using the respective mean
square errors MSE1 and MSE2 as described in Section 2.2. The regression coefficients
of the OLS estimators in Table 2 were obtained at value of k = 0 in all cases. For more
understanding of how the best shrinkage parameter values k1 and k2 were determined
for the two ridge regression estimators RR1 and RR2, the plot of the all the ridge regres-
sion parameter estimates at various possible values of the shrinkage parameter k within
the interval (0, 1) for RR1 and RR2 models are obtained as shown in Fig 1 and Fig
2. The values of MSE1 and MSE2 yielded by OLS estimator in each data are equally
reported in Table 2. The plots of the graphical display of how the optimal shrinkage
parameter estimates, k1 and k2, of the two ridge estimators (RR1 and RR2) were de-
termined are presented by Fig 1 and Fig 2. In both graphs, the best ridge regression
models that yielded the least MSE1 and MSE2 values were obtained at k(k1) = 0.048
and k(k2) = 0.051 for RR1 and RR2 estimators respectively over 1000 cross-validation
search for the best value of k.

Various results in Table 2 indicated that, with scaled predictor variables, the two ridge
estimators RR1 and RR2 are more efficient than the OLS estimators. In all the results,
the estimated MSE1 and MSE2 values of the two ridge estimators are relatively smaller
than that of the OLS estimators.
It is very instructive to remark that, the better performance of the ridge estimator as
demonstrated by RR1 and RR2 estimators over OLS depends largely on the degree of
multicollinearity in the data. If not all the predictor variables in a multiple linear re-
gression model are correlated, the OLS estimator might still be efficient by some chance
factor. In the present study, two (x3 and x4) of the six simulated predictor variables are
purely uncorrelated (p ≈ 0.4) while the remaining four predictors are significantly corre-
lated (p < 0.05). For data sets with this kind of multicollinearity structure, about three
out of ten OLS models fitted to such data would still be efficient despite the presence of
multicollinearity as shown by the results in Table 3. Out of between 500 and 10000 data
sets simulated, the OLS and the ridge (RR2) estimators have average relative efficiencies
of about 28% and 72% respectively. The relative efficiency (RE) of an estimator, in this
context, is determined by the proportion of times (expressed in percentages in paren-
thesis) the estimator yielded the best models (i.e. the least mean square error, MSE2)
out of the total number of the fitted models. It is observed (results not shown) that the
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Table 2: The regression results of the ordinary least squares (OLS) estimator, ridge regres-

sion estimator 1 (RR1) and estimator 2 (RR2) for ten simulated data sets. The estimated

regression parameters of the models, their mean square errors (MSE1 and MSE2) and the

values of the shrinkage parameter k (k1 for RR1 and k2 for RR2) that yielded the best ridge

regression models (the least MSE1 or MSE2) in each data are presented. The value of k = 0

for all the OLS estimators. The mean square errors of the OLS estimators for MSE1 and

MSE2 are also reported.

Data Model k β0(25) β1(10) β2(15) β3(60) β4(40) β5(35) β6(20) MSE1 MSE2

Type

1 OLS 0.000 24.484 8.262 7.537 49.853 45.090 49.398 20.146 56.455 5321.1

RR1 0.099 24.484 13.147 11.356 46.767 41.770 44.153 23.010 42.075 −
RR2 0.058 24.484 11.424 9.968 47.895 42.975 45.958 22.022 − 1539.9

2 OLS 0.000 23.442 13.443 16.640 70.332 38.999 32.895 7.658 40.212 5321.1

RR1 0.113 23.442 17.932 16.818 61.488 37.683 31.033 14.898 16.858 −
RR2 0.042 23.442 15.444 16.536 66.394 38.555 31.997 11.005 − 1797.3

3 OLS 0.000 25.688 5.162 9.454 66.436 44.408 40.878 11.400 32.002 5321.1

RR1 0.132 25.688 11.852 12.292 57.995 40.962 36.276 18.248 2.982 −
RR2 0.036 25.688 7.462 10.267 63.553 43.355 39.199 13.880 − 1928.2

4 OLS 0.000 25.177 13.274 27.155 56.448 31.386 34.185 15.089 38.586 5321.1

RR1 0.011 25.177 13.716 26.974 55.630 31.426 33.931 15.849 38.313 −
RR2 0.133 25.177 17.227 26.082 49.397 31.319 32.121 21.246 − 1036.9

5 OLS 0.000 23.289 10.734 21.506 67.273 32.465 32.465 14.879 26.694 5321.1

RR1 0.065 23.289 13.431 21.040 62.090 32.261 31.608 19.089 18.256 −
RR2 0.061 23.289 13.291 21.051 62.357 32.281 31.661 18.883 − 1497.8

6 OLS 0.000 27.080 6.246 24.816 69.697 37.208 28.276 15.171 40.733 5321.1

RR1 0.100 27.080 10.452 24.035 61.787 36.369 27.507 21.155 22.860 −
RR2 0.048 27.080 8.521 24.258 65.353 36.864 27.792 18.577 − 1497.8

7 OLS 0.000 24.732 9.292 10.529 67.848 40.544 33.555 17.005 13.357 5321.1

RR1 0.074 24.732 12.716 11.818 62.599 38.842 31.937 19.535 5.096 −
RR2 0.045 24.732 11.532 11.305 64.422 39.479 32.459 13.357 − 1674.7

8 OLS 0.000 23.907 17.691 2.230 43.535 51.477 32.204 33.957 118.41 5321.1

RR1 0.154 23.907 21.353 9.568 42.339 44.846 30.346 32.413 95.820 −
RR2 0.078 23.907 19.858 6.617 43.048 47.535 30.985 32.936 − 1632.4

9 OLS 0.000 26.726 12.411 29.279 61.321 36.201 19.412 21.457 67.710 5321.1

RR1 0.042 26.726 13.616 28.591 58.274 36.009 20.014 23.519 65.235 −
RR2 0.085 26.726 14.636 28.173 55.815 35.714 20.579 25.045 − 1207.3

10 OLS 0.000 24.412 7.790 9.900 58.522 39.750 42.391 21.916 13.111 5321.1

RR1 0.039 24.412 9.867 11.049 56.454 38.666 40.645 23.554 10.689 −
RR2 0.060 24.412 10.818 11.615 55.495 38.143 39.877 24.267 − 1426.1
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Figure 1: The plots of the ridge regression parameter estimates at various possible values of
the shrinkage parameter k within the interval (0, 1) for RR1 model. The best ridge
regression model that yielded the least MSE1 value was obtained at k(k1) = 0.048
over 1000 cross-validation search.
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Figure 2: The plots of the ridge regression parameter estimates at various possible values of
the shrinkage parameter k within the interval (0, 1) for RR2 model. The best ridge
regression model that yielded the least MSE2 value was obtained at k(k2) = 0.051
over 1000 cross-validation search.
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Table 3: The table shows the number (percentage) of best regression models (models with

the least MSE2 values) yielded by the ordinary least squares (OLS) and ridge regression

(RR2) estimators out of a number of fitted models (from 500 to 10, 000 as indicated in the

first column). At each iteration (number of models fitted), the relative efficiency (RE) of

each estimator is determined by the proportion of times (expressed in % in the parenthesis)

the estimator yielded the least mean square error (MSE2) out of the total number of fitted

models.

Number of fitted Number (%) of best models yielded by OLS

Models (Iteration) and Ridge estimators using MSE2 criteria

OLS Ridge (RR2)

500 143(28.6%) 357(71.4%)

1000 254(25.4%) 746(74.6%)

1500 418(27.9%) 1082(72.1%)

2000 537(26.9%) 1463(73.1%)

2500 685(27.4%) 1815(72.6%)

3000 873(29.1%) 2127(70.9%)

3500 976(27.9%) 2524(72.1%)

4000 1140(28.5%) 2860(71.5%)

4500 1243(27.6%) 3257(72.4%)

5000 1384(27.7%) 3616(72.3%)

10000 2762(27.6%) 7238(72.4%)

Average % of RE 27.69% 72.31%

fewer the number of collinear predictors (i.e. the lower the degree of multicollinearity) in
the model, the higher the RE score of the OLS estimator and vice-versa. However, the
results of the ridge estimators become that of the OLS when all the predictor variables
in the model are purely uncorrelated. Without loss of generality, the OLS estimator
appears optimistic in the presence of some levels of multicollinearity in the model, the
chance that this estimator would yield efficient results on data with correlated predictors
is relatively small, less than 30% in this case. Therefore, it is strongly recommended
that whenever multicollinearity is suspected in a data set, an alternative robust estima-
tor like the ridge should be employed to guarantee the reliability of the results obtained
for meaningful inference.
The MSE2 in (5) was chosen to assess the performance of the regression models in Ta-

ble 3 mainly for practical purposes, since it is the most appropriate model’s assessment
criterion for real life data among the two MSEs (MSE1 and MSE2) employed here.
This consequently informed the choice of the ridge regression estimator, RR2 against
which the results of the OLS estimator were compared as shown in Table 3.

To assess the stability of the OLS and the two ridge regression estimators (RR1 and
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Table 4: Table of some summary statistics (mean, median and variance) of the estimated

regression parameters by ordinary least squares (OLS) and the two ridge regression estima-

tors (RR1 and RR2) over 500 fitted models (iterations). The three models were estimated

using the scaled predictor variables.

Estimator Parameter β0 = 25 β1 = 10 β2 = 15 β3 = 60 β4 = 40 β5 = 35 β6 = 20

OLS Mean 25.054 10.164 15.281 60.463 39.408 35.096 19.574

Median 25.017 10.145 14.846 60.354 39.128 34.660 19.634

Variance 1.137 35.920 44.551 52.150 37.102 61.003 52.913

RR1 Mean 25.054 12.993 16.171 56.639 38.154 33.441 22.526

Median 25.017 12.631 15.672 57.346 38.066 33.651 21.844

Variance 1.137 19.227 28.100 21.915 25.259 38.747 24.416

RR2 Mean 25.054 12.839 16.254 56.753 38.114 33.666 22.283

Median 25.017 13.156 16.363 56.350 37.744 33.025 22.710

Variance 1.137 35.915 33.333 50.537 30.139 46.126 42.381

RR2) using the scaled predictor variables, we present in Table 4, some summary statistics
(mean, median and variance) of the three regression estimators over 500 fitted models
(iterations). The results in Table 4 showed that, although, the median and the mean
estimated by the three regression estimators are very close, an indication that they are
all consistent. A closer look at the estimated variances showed that the two ridge estima-
tors, RR1 and RR2 are quite more stable than the OLS estimators. The variances of the
OLS estimators are relatively larger than those provided by RR1 and RR2 estimators
across the six estimated slope parameters in the models.
From all the results in Table 1 through Table 4 as discussed so far, the positive impact of
scaled predictor variables at improving the ridge regression estimators has been largely
demonstrated. While OLS estimator may seem promising in few instances despite the
presence of multicollinearity, the ridge regression estimator with a higher relative effi-
ciency of about 70% still remains a good alternative to OLS to model data with correlated
predictor variables.

3.2 Results From Real Life Data

The impact of scaled and unscaled correlated predictor variables on the performance
of OLS and ridge regression estimators are presented using a real life data set on the
French economy.
The French data analysed here is an historical data set on import activities in French
economy. The data were first analysed by Malinvaud (1968) and later by Chatterjee
and Hadi (2006) among others. The response variable is imports (IMPORT) which was
regressed on domestic production (DOPROD), stock formation (STOCK) and domestic
consumption (CONSUM), all measured in billions of French francs for 18 years beginning
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Table 5: The correlation matrix showing the extent of linear relationship between the

predictor variables. The estimated p-values of the correlation tests are reported in paren-

theses. Only the amount spent on domestic production (DOPROD) and domestic con-

sumptions (CONSUM) are highly and significantly correlated (p < 0.001), an indication

that multicollinearity exist in the data.

DOPROD STOCK CONSUM

DOPROD 1

STOCK −0.106(p = 0.771) 1

CONSUM 0.997(p < 0.001) −0.101(p = 0.782) 1

from 1949 to 1966. This resulted into the multiple linear regression model of the form

IMPORT = β0 + β
∗
1DOPROD + β

∗
2STOCK + β

∗
3CONSUM + ε (11)

Due to the violation of the basic assumption of constancy of error term across all the 18
sample units in the data, as established by Chatterjee and Hadi (2006), data set for 11
years beginning from 1949 to 1959, as used in that work were equally employed here for
easy comparison of results.
In order to examine the existence of linear relationship among the three predictor vari-
ables, the correlation tests were performed using their sample pair-wise correlation coef-
ficients, as presented in the correlation matrix in Table 5 with their respective p-values.
The results in the table showed that French’s domestic productions (DOPROD) and
domestic consumptions (CONSUM) are the only pair of predictor variables that are
significantly correlated (corr. = 0.997, p < 0.001), indicating the existence of multi-
collinearity in the data.

In Table 6, we present the results of the OLS and ridge regression (RR2) of model (11)
fitted to the data, as equally reported in Chatterjee and Hadi (2006). The two regres-
sion models were fitted using the raw (unscaled) values of the three predictor variables
DOPROD, STOCK and CONSUM. From the results in Table 6, the OLS representation
of the fitted remodel is

̂IMPORT = −10.13+0.0514∗DOPROD+0.5869∗STOCK+0.2868∗CONSUM (12)

while its ridge regression representation is

̂IMPORT = −8.5537+0.0635∗DOPROD+0.5859∗STOCK+0.1156∗CONSUM (13)

The simple interpretation of the estimated intercept parameters in the OLS and ridge
regression equations (12) and (13) is that the expected amount of imports (IMPORT)
into the French economy from 1949 to 1959 are about −10 and −9 billions of francs
respectively given that the values of the domestic production (DOPROD), stock forma-
tion (STOCK) and domestic consumption (CONSUM) are all zero. These two results
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Table 6: The results of the OLS and ridge regression models on the French economy data

from 1949 to 1959 using the raw(unscaled) values of the predictor variables as reported by

Chatterjee and Hadi (2006).

Estimator Estimated Models’ parameters

Intercept DOPROD STOCK CONSUM

OLS −10.1300 −0.0514 0.5869 0.2868

Ridge (RR2) −8.5537 0.0635 0.5859 0.1156

Table 7: The results of the OLS and ridge regression models on the French economy data

from 1949 to 1959, see Chatterjee and Hadi (2006), using the scaled values of the predictor

variables. The optimal shrinkage parameter of the ridge regression was determined to be

0.07. The mean square error of the OLS and the best ridge regression models are provided

in the table which shows better performance of the ridge estimators (with smaller MSE2)

over the OLS estimators.

Estimator Shrinkage Estimated Model’s parameters MSE2

parameter Intercept DOPROD STOCK CONSUM

k

OLS 0.000 21.891 −1.542 0.968 5.919 62.422

Ridge 0.07 21.891 −0.830 0.974 5.205 18.211

are unrealistic, because the amount of imports (in billions of French francs) into the
French economy, quantified in monetary terms, cannot be negative as portrayed by the
two results. The main cause of the unrealistic and unstable results of both the OLS and
ridge estimators in Table 6 is the presence of multicollinearity in the data as shown in
Table 5.
To demonstrate the impact of scaling, the values of the three predictor variables in the
French data were scaled to zero means and unit standard deviations using statistic (7).
The OLS and the ridge regression (RR2) models were fitted to the transformed data,
the results of which are presented in Table 7. The optimal shrinkage parameter k2 of the
ridge regression estimator RR2 was determined to be 0.07 through 1000 cross-validation
search for the best shrinkage parameter value within the interval (0, 1) according to the
procedures detailed in Section 2.2. This value of k2 = 0.07 is the optimal value of the
shrinkage parameter k of the ridge regression estimator RR2 for the data which yielded
the least mean square error (MSE2) estimate of 18.211.

The plot of the various estimates of the ridge regression parameters against the values of
the shrinkage parameter k at which they were obtained is presented in Fig 3.The graph
showed the optimal shrinkage parameter value of 0.07 at which stable estimates of the
ridge regression parameters were obtained.
Based on the results in Table 7, the most efficient regression model for the French data
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is the fitted ridge regression model

̂IMPORT = 21.891 + 0.830∗DOPROD + 0.974∗STOCK + 5.205∗CONSUM (14)
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Figure 3: The plot of various regression parameters against the shrinkage parameter values.
The best shrinkage parameter value k2 that yielded the least mean square error
(MSE2) as determined by cross-validation is 0.07 for the data.

From these regression results, it is quite obvious that scaling of the predictor vari-
ables has greatly assisted to stabilize the estimates of both the OLS and ridge regression
parameters, most especially the intercepts. In both models, the value of the intercept pa-
rameter was estimated to be 21.891 which reasonably translates to the expected amount
of imports (IMPORT) into the French economy (in billions of francs) between 1949 to
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1959. However, the results showed that the ridge estimator with estimated mean square
error (MSE2) of 18.211 is still better than the OLS estimator with relatively higher
MSE2 value of 62.422.

4 Conclusion

Ridge regression estimator, has been established to be a credible alternative to the
classical OLS estimators when some of the predictor variables are correlated. It is a
biased but efficient regression technique in the presence of multicollinearity in multiple
linear regression models, seeMuniz and Kibria (2009) and Kibria (2003).
The basic procedures for fitting ridge regression model to data with inherent collinear
structure are examined in this study. The widely adopted ridge regression technique, as
proposed by Hoerl and Kernard (1970a), required that the optimal value of the shrinkage
parameter k be nonnegative (k > 0), and indeed, that the value of k should fall within the
interval (0, 1). This has resulted into the development of various forms of ridge estimator,
k based on this earlier proposition as reported in Lawless and Wang (1976); Lin and
Kmenta (1982); Hoerl et al (1985) and in few other works. However, it has been clearly
demonstrated in this work that, following this traditional ridge regression techniques,
efficient ridge regression models might not be achieved using the raw (unscaled) values of
the predictor variables for estimation in the presence of multicollinearity. It is therefore
necessary and desirable to scale the predictor variables in ridge regression modelling
when the presence of multicollinearity is suspected.
Another important result from this study is that, the OLS estimators might sometimes
yield good regression results like the ridge estimator in the presence of multicollinearity
if the predictor variables are scaled. This is evident from the Monte-Carlo results in
Table 3 in which the average relative efficiency of OLS estimator was about 30% despite
the inherent collinear structure in the data. However, this optimistic behaviour of the
OLS depends largely on the degree of multicollinearity in the data. The OLS estimator
would have appreciable relative efficiency while modelling data with fewer numbers of
correlated predictors than data with much number of collinear predictors.
Finally, as reported by Yahya et al (2008) and several others, inter-dependencies among
the pairs of explanatory variables in general regression estimation is inevitable in many
practical real life situations. When multicollinearity is suspected in a data set, thorough
examination is needed to determine the severity of such collinear structure. This will
inform the proper choice of suitable estimation techniques to model the data. However,
whenever the ridge regression modelling technique as proposed by Hoerl and Kernard
(1970a) is adopted, it is desirable for the investigators to work with the standardize
values of the predictor variables as implemented in many works, see Marquardt and
Snee (1975); Fearn (1993) and Bradly and Srivastava (1997). By this, efficient estimates
of the ridge regression models can be guaranteed in the presence of collinear predictors
in the data.
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