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Since times of Yule (1926), it is known that correlation between two time
series can produce spurious results. Granger and Newbold (1974) see the
roots of spurious correlation in non-stationarity of the time series. However
the study of Granger IV et al. (2001) prove that spurious correlation also
exists in stationary time series. These facts make the correlation coefficient
an unreliable measure of association. This paper proposes ’Modified R’ as
an alternate measure of association for the time series. The Modified R is
robust to the type of stationarity and type of deterministic part in the time
series. The performance Modified R is illustrated via extensive Monte Carlo
Experiments.
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1 Introduction

The correlation coefficient is one of most commonly used statistics in the analysis of
statistical data. The correlation gives the measure of degree of association between two
variables. The correlation coefficient was introduced by Pearson (1894) to analyze the
cross-sectional data. This simple statistics is useful to have an immediate idea of the
strength of relation between two variables, however it use for the time series data has
been subject to critique since Yule (1926). The reason for this critique is the possibility
of spurious correlation. The nature of time series is different from the cross sectional
data. Most important feature of the time series data is the serial dependence of the
observations. Due to the serial dependence, distribution of various estimators differs for
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time series than from the cross section. This serial dependence is one of the sources of
spurious correlation among two data sets.

Concept of spurious correlation is as old in statistics as the correlation itself. Spurious
correlations occurs if two variables appear to be correlated (or highly correlated) but
in fact there is no (or very weak) relationship between the two variables. Pearson is
responsible for the introduction of concept of spurious correlation. Aldrich (1995) reports
his first encounter of Pearson with the spurious correlation during a study of personal
judgment in 1897. Elderton (2011) published a book entitled ’Frequency-Curve and
Correlation’, which is assumed to be representative of Pearsonian School of Thought. In
his book, he writes:

It is possible to obtain significant value of correlation coefficient when in
reality two functions are absolutely uncorrelated (cited in Aldrich (1995)).

Various types of occurrences of spurious correlation has been discovered in the first
three decades of twentieth century e.g. (i) spurious correlation due to use of ratios (Yule,
1897), (ii) spurious correlation due to mixing of races (Pearson et al., 1899), Yule’s
illusory association that does not indicate causal relation but common dependence on
third variable (Yule, 1910, 1926; Simon, 1954), and Yule’s none-sense regression of time
series. However now a days, the term ’spurious correlation’ is used only in the context
of time series. For example, Granger IV et al. (2001) (GHJ01 hereafter) define spurious
correlation as:

A spurious regression occurs when a pair of independent series, but with
strong temporal properties, is found apparently to be related according to stan-
dard inference in an OLS regression.

Therefore the use of term spurious correlation is used only in the context of time series
data. This study introduces a new and robust measure of association for the time series.
This measure of association is not affected by the serial correlation in the time series
and gives a reliable measure of association.

2 Correlation and Non-Stationarity

Most important reason for the development of literature on unit root is perhaps the pos-
sibility of spurious correlation among time series. Although there may be various reasons
for occurrence of spurious correlation, and stationary series may also exhibit spurious
correlation (GHJ01), most of literature present unit root as only responsible for the ex-
istence of spurious correlation. The correlation coefficient fails to measure strength of
association between two unit root series. The historical roots of this phenomenon dates
back to Yule (1926). He found that two time series may have extraordinarily high cor-
relation when in fact there is no relationship between two. However there was no clarity
on the reasons behind occurrence of this phenomenon. Yule (1926) and Simon (1954)
thought that it is some missing variable which is responsible for such extraordinarily
high correlation.
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Granger and Newbold (1974) (GN74 hereafter) observed that if two series containing
unit root are regressed onto each other, they are most likely to produce high R-square
and significant t-statistics. Nelson and Plosser (1982) observed that unit root model is
more appropriate for most of economic time series. These two studies present an alter-
nate explanation of the phenomena observed by Yule a half century ago i.e. it’s the unit
root responsible for existence of spurious correlation. Phillips (1987) provided analytical
proofs of the occurrence of spurious correlation and other diagnostic for the integrated
series.
Later on, it has been proven that two independent stationary series when regressed onto
each other, may also produce spurious results (GHJ01), most of econometric textbooks
present existence of unit root an analogue of the spurious regression (Greene, 2003;
Gujarati and Porter, 1999; Enders, 2008) for example.

3 Correlation Coefficient in Time Series

The correlation coefficient was introduced to analyze the cross-sectional data. The na-
ture of time series is different from the cross sectional data. Most important feature
of the time series data is the serial dependence of the observations. Due to the serial
dependence, distribution of various estimators differs for time series than from the cross
section. This serial dependence is one of the sources of spurious correlation among two
data sets.
The time series are usually classified into two classes, stationary and unit root. For the
unit root series, GN74 have proved high probability of the spurious results. For station-
ary series, it was believed that the asymptotic distribution of the regression diagnostic
is similar to the that of IID series, however, GHJ01 have proved that there is very high
probability of spurious regression for the stationary time series as well.
In a letter study GHJ01 found that the phenomenon of spurious regression is not re-
stricted to the non-stationary variables.GHJ01 found evidence of spurious correlation
between positively autocorrelated stationary series. In particular, the distribution of
correlation coefficient is very different for autocorrelated series than from IID series so
that one cannot use correlation coefficient as a measure of association among the time
series. R-square and the multiple R are valid measure of association only if the two
series are IID.
The properties of measures of correlation e.g. the correlation coefficient and the t-
statistics presented above prove that the correlation coefficient r is not a reliable measure
of association for the time series. This study proposes a simple statistics modified R as
an alternate measure of association between the time series. The distribution is robust
to amount of autocorrelation, the specification of deterministic regressors and the type
of stationarity among the time series. The performance of this statistics is illustrated
for various types of models via Monte Carlo experiments.
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4 Spurious Correlation among Stationary Time Series

Consider two stationary series:

xt = a1 + d1xt−1 + et et ∼ IN(0, S2
e ) (1)

yt = a2 + d2yt−1 + ut ut ∼ IN(0, S2
u) (2)

If there is no correlation between xt and yt , then the two series are independent and any
reasonable measure of association should reveal this independence. However, if is non-
zero, than the distribution of correlation coefficient R has wider spread and the series
appear to be dependent. This spurious correlation diminish very slowly with the increase
in sample size. To illustrate this fact, we had conducted a Monte Carlo experiment in
which we have simulated the distribution of R. The results are presented in Fig1.

Figure 1: Distribution of Pearson correlation coefficient of stationary series with auto-
correlation

The bold curve in Fig 1 represents the distribution of Pearson correlation R for IID
series. This distribution is invariant to sample size. The dotted/dashed lines represent
the distribution of R for different sample sizes when the two series are autocorrelated.
The series have no mutually correlated, yet the spread of the distribution of R increased
showing that the apparent correlation will be higher than the actual correlation. In Fig
1 it is visible that for sample size 2000, the distribution of correlation coefficient is much
wider than the distribution of correlation for IID series. The 95%confidence interval for
autocorrelation between two IID series is (0 +/- 0.103) when sample size is 2000. When
series are autoregressive with autoregressive coefficient of 0.6, the correlation coefficient
outside this interval was 55 %. If two series are generated by the DGP described in eq. 1
& 2 with d1 = d2 = 0.9, than the probability of correlation outside the interval increases
to 77 % . This implies that even for the stationary series, the probability of spurious
correlation may be as high as 77% with reasonably large sample size. With the increase
in value of autoregressive parameter, the scatter of distribution of correlation increases
and the probability of spurious correlation between series increases.
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4.1 Implication of the above discussion

Although spurious correlation is usually referred to the unit root processes, one can see
the incidence of extraordinarily high correlation in stationary series with autoregressive
root not very close to unity. The distribution of correlation among autoregressive series
converges to the distribution of correlation among IID series, but the convergence is very
slow and in practically relevant sample sizes, there is huge probability of encounter with
the spurious correlation among two uncorrelated time series. For unit root series, dis-
tribution of correlation among time series in not convergent and probability of spurious
correlation increases with the increase of sample size.
All these problems make R-square an invalid inferential statistics whether the series are
stationary or unit root. Therefore it is desirable to develop some statistics which can
give more reliable measure of association between two time series.

5 Modified R

We propose a new statistics to be used as a measure of association between two time
series. This statistics is the correlation between recursive forecasts errors of autoregres-
sive models fitted to both the series.
Correlation coefficient is a descriptive assumed to measure strength of association be-
tween two data sets. When two data series are IID, correlation coefficient R gives reliable
measure of the association, but when there is violation of IID property, the distribution
of correlation coefficient changes drastically. We aim to develop a statistics whose dis-
tribution is invariant to the change of IID assumption. This can be done if we make a
model which can approximate any of the dynamic structure. The forecast residual while
forecasting from this type of model will be close to random. If we compute correlation
between forecast residuals, it is expected to give more reliable measure of the associa-
tion between the time series. Let us call this statistics as MR; the statistics is defined
as follows:
For two time series of length T, let T1 be number smaller than T i.e. T1 < T series
x = {x1, x1.......xT } and y = {y1, y1.......yT }

1. For T1 < T , estimate the autoregressive model xt = âT1 + d̂T1xt−1 +et using OLS

2. compute x̂T1+1 = âT1 + b̂T1xT1

3. compute eT1+1 = xT1+1 − x̂T1+1

4. Repeat the process for T1+1, T1+2, T-1 to compute eT+1, eT+2, eT+3.....eT

5. Repeat Steps 1-4 for the series for series y = {y1, y1.......yT } to compute forecast
error uT+1, uT+2, uT+3.....uT

6. Compute the correlation between the forecast residuals from the two series of the
forecast residuals



6 Rehman and Malik

The modified R is based on recursive residuals from autoregressive model with general-
ized form of linear trend thus is capable of producing desired results. The MR is similar
to Hough portmanteau statistics. However it differs from Haughs(1976) statistics in
that Haughs statistics is based on residuals of ARMA model fitted to all points in the
data sets; whereas MR is based on recursive residuals. It utilizes all past information
to predict current residual of the time series and future observations are irrelevant for
computation of current residual

6 Properties of Correlation Coefficient and the Modified R

We compute distribution of R and MR for data generated by following bivariate autore-
gressive process.[
xt

yt

]
=

[
δ1 0

0 δ2

][
xt−1

yt−1

]
+

[
a1 a2

b1 b2

][
1

t

]
+

[
εxt

εyt

] [
εxt

εyt

]
∼

[[
0

0

]
,

[
1 ρ

ρ 1

]]
For simplification of notation, we can rewrite as

xt = Axt−1 + Bd + εεεt εεεt ∼ N(0,Σ) (3)

This data generating process produces two autoregressive series. The two series will be
independent if Σ is a diagonal matrix and correlated otherwise. So the value of any
measure of association would depend only on Σ . Other parameters in the model i.e.
A and b are the nuisance parameters for the mutual correlation of two series. The
correlation coefficient R has been shown to be dependent on the nuisance parameters.
The matrix reflects the strength of autocorrelation in the two series whereas the matrix
is to specify the deterministic part in the model. If A = 0 , this implies two series
have no autocorrelation and b = 0 implies absence of the drift and linear trend. Series
would be IID if both A and b are zero. Non diagonal value of Σ implies by mutual
correlation of the two series. We had Monte Carlo with different values of and results
are summarized in Table 1 to 4. It was observed that MR is robust to the values of these
nuisance parameters

Figure 2: Distribution of R Figure 3: Distribution of MR

The fig. 1 & 2 above represent the distribution of R and MR where b = 0 and Σ = I.
The strength of autocorrelation for two series remains same i.e d1 = d2 = d. We see that
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the distribution of R changes with the strength of autocorrelation whereas the distribution
of MR is almost invariant to it.

7 Testing the correlation

The correlation coefficient is used as a descriptive, not as a test of association. It
gives quick idea of strength of correlation but neither used to prove nor to disprove
the correlation between two variables. MR is supposed to serve the similar purpose,
i.e. as a descriptive rather than a test. However, extraordinarily high correlation would
lead someone to suspect that the two series are correlated. To measure the probability
of deceivingly high correlation using the two measures of correlation, we used the two
measures as a test for mutual correlation. Two sided critical values of R and MR
were computed using two IID series. A value of R/MR outside these critical values is
considered as rejection of null hypothesis of no correlation.

7.1 Results of Monte Carlo

By choosing various values of the nuisance parameters, we compute the distribution and
rejection rate of null of no correlation under the null and alternative to compute the
size and power respectively. The data generating process used for these simulations are
described below Different models are constructed using different values of b and Σ . The
detail of these models is as under:
M1 b = 0 and Σ = I (IID and mutually independent)

M2

[
0.5 0

0.5 0

]
and Σ = I (independent)

M3

[
0.5 0.5

0.5 0.5

]
and Σ = I (independent)

M4A

[
0 0

0 0

]
and Σ =

[
1 0.2

0.2 1

]
(IID and weakly correlated)

M4B

[
0 0

0 0

]
and Σ =

[
1 0.5

0.5 1

]
(IID and strongly correlated)

M5A

[
0.5 0

0.5 0

]
and Σ =

[
1 0.2

0.2 1

]
(weakly correlated)

M5B

[
0.5 0

0.5 0

]
and Σ =

[
1 0.5

0.5 1

]
(strongly correlated)
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M6A

[
0.5 0.5

0.5 0.5

]
and Σ =

[
1 0.2

0.2 1

]
(weakly correlated)

M6B

[
0.5 0

0.5 0

]
and Σ =

[
1 0.5

0.5 1

]
(strongly correlated)

Table 1 summarize results of Monte Carlo when the two series do not have drift and
linear trend. It is evident that the distribution of R is tremendously changed when the
series are autocorrelated (not mutually correlated).
In all simulations reported in Table:1, only value of autocorrelation is changed and we can

Table 1: Distribution of R and MR for Different values of autoregressive parameter:
DGP : M1, sample size 100

Mean Median SD IQR RR

dx = 0.00 R 0.00 0.00 0.12 0.16 5

dx = 0.00 MR 0.00 0.00 0.13 0.18 5

dx = 0.60 R 0.00 0.00 0.17 0.23 17

dy = 0.60 MR 0.00 0.00 0.13 0.18 5

dx = 0.85 R 0.00 0.00 0.27 0.39 41

dy = 0.85 MR 0.00 0.00 0.14 0.19 7

dx = 1.00 R 0.00 -0.01 0.49 0.82 72

dy = 1.00 MR 0.00 0.00 0.15 0.20 8

see that due to this change, the distribution of R also changes but the distribution of MR
remains same. The last row of the table corresponds to two mutually independent unit
root series. The distribution of R and MR both are cantered at zero, however the spread
of the distribution of R increase with increase in strength of autocorrelation. Hence
the nuisance parameters enter the distribution of MR. But there is very little affect of
nuisance parameters on the distribution of MR. The last column shows the rejection rate
of null hypothesis of no autocorrelation. The deviation from IID assumptions leads the
correlation to be biased to non-rejection of the relationship, whereas the MR maintains
its size, so that the rejection of (true) null of no relationship does not deviate from its
nominal size.
Table:2 summarizes the results of Monte Carlo when the two series contain drift but
no linear trend. The chances of encounter with spurious relationship between two series
increase when there is drift term present in the data generating process, if the relationship
is measured by R. But the MR maintains its size even in the presence of drift term.
Table:3 summarize results when the two series have both drift and linear trend. In that
case R is almost sure to reject the null of no correlation.
Table:4-6 summarize results when the two series in data generating process have different
strength of autocorrelation. First case in the three Tables corresponds to a situation
when one series is integrated whereas other series is stationary. One can see that the
performance of MR is affected by the presence of unit root series; however the size
distortion is not very large. The superiority of MR over R is clearly evident.



Electronic Journal of Applied Statistical Analysis 9

Table 2: Distribution of R and MR for Different values of autoregressive parameter:
DGP: M2

Mean Median SD IQR RR

dx = 0.00 R 0.00 0.00 0.12 0.16 5

dy = 0.00 MR 0.00 0.00 0.13 0.17 5

dx = 0.60 R 0.02 0.02 0.17 0.23 17

dy = 0.60 MR 0.00 0.00 0.13 0.18 5

dx = 0.85 R 0.14 0.15 0.25 0.36 45

dy = 0.85 MR 0.00 0.00 0.13 0.19 6

dx = 1.00 R 0.94 0.96 0.05 0.04 99

dy = 1.00 MR 0.01 0.01 0.14 0.20 8

Table 3: : Distribution of R and MR for Different values of autoregressive parameter:
DGP: M3

Mean Median SD IQR RR

dx = 0.00 R 0.99 0.99 0.00 0.00 100

dy = 0.00 MR 0.00 0.00 0.13 0.18 5

dx = 0.60 R 1.00 1.00 0.00 0.00 100

dy = 0.60 MR 0.02 0.02 0.14 0.19 7

dx = 0.85 R 1.00 1.00 0.00 0.00 100

dy = 0.85 MR 0.03 0.03 0.14 0.19 9

dx = 1.00 R 1.00 1.00 0.00 0.00 100

dy = 1.00 MR 0.00 0.00 0.13 0.18 5

Table:7-9 summarize distribution of R and MR for different levels of mutual correlations.
It should be noted that powers of R and MR can not be compared since size of two is
not same. However it is obvious from the Tables that MR is sharp enough to find out
correlation between two series even with week correlation present between two series.

8 Conclusion

Correlation coefficient is a popular statistics in classical econometrics since it provides
quick idea of the strength of association among the two variables. However it is now well
recognized fact that the correlation coefficient R is strongly biased toward finding high
correlation among the time series even if the two series are mutually uncorrelated. This

Table 4: : Distribution of R and MR for Different values of autoregressive parameter
and different type of stationary: DGP: M1

Mean Median SD IQR RR

dx = 1.00 R 0.00 0.00 0.14 0.19 10

dy = 0.00 MR 0.00 0.00 0.16 0.23 12

dx = 0.60 R 0.00 0.00 0.23 0.32 32

dy = 0.85 MR 0.00 0.00 0.17 0.24 13
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Table 5: Distribution of R and MR for Different values of autoregressive parameter and
different type of stationary:DGP: M2

Mean Median SD IQR RR

dx = 1.00 R 0.02 0.02 0.14 0.19 10

dy = 0.00 MR 0.00 0.00 0.17 0.23 13

dx = 0.60 R 0.06 0.07 0.23 0.32 35

dy = 0.85 MR 0.00 0.00 0.17 0.24 14

Table 6: Distribution of R and MR for Different values of autoregressive parameter and
different type of stationary:DGP: M3

Mean Median SD IQR RR

dx = 1.00 R 0.96 0.96 0.01 0.01 100

dy = 0.00 MR 0.00 0.00 0.16 0.22 11

dx = 0.60 R 1.00 1.00 0.00 0.00 100

dy = 0.85 MR 0.03 0.02 0.17 0.24 15

Table 7: Distribution of R and MR for various degrees of mutual and autocorrelation
No Correlation Weak Correlation Strong Correlation

M3 M6A M6B

Mean SD OUT Mean SD OUT Mean SD OUT

dx = 0.00 R 0.00 0.12 5 0.24 0.11 52 0.69 0.07 100

dy = 0.00 MR 0.00 0.13 5 0.23 0.12 44 0.69 0.07 100

dx = 0.60 R 0.00 0.17 17 0.24 0.16 52 0.69 0.09 100

dy = 0.60 MR 0.00 0.13 5 0.23 0.13 45 0.69 0.07 100

dx = 0.85 R 0.00 0.27 41 0.23 0.25 56 0.68 0.15 99

dy = 0.85 MR 0.00 0.14 7 0.23 0.13 45 0.68 0.08 100

dx = 1.00 R 0.00 0.49 72 0.22 0.47 75 0.66 0.31 91

dx = 1.00 MR 0.00 0.15 8 0.23 0.14 43 0.68 0.09 100

Table 8: Distribution of R and MR for various degrees of mutual and autocorrelation
No Correlation Weak Correlation Strong Correlation

M3 M6A M6B

Mean SD OUT Mean SD OUT Mean SD OUT

dx = 0.00 R 0.00 0.12 5 0.24 0.11 53 0.69 0.07 100

dy = 0.00 MR 0.00 0.13 5 0.23 0.12 45 0.69 0.07 100

dx = 0.60 R 0.02 0.17 17 0.25 0.16 56 0.69 0.09 100

dy = 0.60 MR 0.00 0.13 5 0.23 0.13 44 0.69 0.07 100

dx = 0.85 R 0.14 0.26 46 0.36 0.23 73 0.74 0.13 100

dy = 0.85 MR 0.00 0.14 7 0.23 0.13 45 0.69 0.08 100

dx = 1.00 R 0.94 0.05 100 0.96 0.03 100 0.99 0.02 100

dy = 1.00 MR 0.01 0.15 8 0.23 0.14 45 0.68 0.09 100
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Table 9: Distribution of Various Measures of Correlation for various degrees of mutual
and autocorrelation

No Correlation Weak Correlation Strong Correlation

M3 M6A M6B

Mean SD OUT Mean SD OUT Mean SD OUT

dx = 0.00 R 0.99 0.00 100 0.99 0.00 100 1.00 0.00 100

dy = 0.00 MR 0.00 0.13 5 0.24 0.13 45 0.69 0.07 100

dx = 0.60 R 1.00 0.00 100 1.00 0.00 100 1.00 0.00 100

dy = 0.06 MR 0.02 0.14 7 0.24 0.13 48 0.68 0.08 100

dx = 0.85 R 1.00 0.00 100 1.00 0.00 100 1.00 0.00 100

dy = 0.85 MR 0.03 0.15 9 0.26 0.14 52 0.70 0.08 100

dx = 1.00 R 1.00 0.00 100 1.00 0.00 100 1.00 0.00 100

dy = 1.00 MR 0.00 0.13 5 0.24 0.12 47 0.70 0.07 100

phenomenon is usually called spurious correlation. We have presented the evidences that
spurious correlation exist even among the stationary series. This means for time series
models, in no case correlation provides reliable measure of association because almost
all of economic time series are serially dependent. We developed a new measure of asso-
ciation MR which is robust to type and strength of autocorrelation, type of stationarity
and type of deterministic part in the data generating process of the two series. MR
is not formal test of association between two series rather it is a descriptive giving the
immediate idea of the strength of association between two series. We recommend use of
MR in the time series models instead of the conventional R.

9 Application

The modified R is assumed to give the quick idea of relationship between two variables.
It should have ability to discriminate between spurious time series relationship and
the genuine relationship. Usually its not possible to evaluate to evaluate any statistical
procedure using real data because we do not know the nature of true relationship between
real time series. However, the data on consumption and income provides opportunity
for evaluating measures of correlation. If we take income and consumption of same
country, they should have genuine correlation, but if we have consumption of one country
versus income of another country, the correlation should not be strong. If we see that
consumption of one country has very high correlation with income of some other country,
this correlation is spurious. Table 10 summarizes computed R and MR between income
and consumption of 15 OECD countries. The diagonal entries of Table 10 correspond
to computed R and MR statistics for income and consumption of same country. We
observe that the value of MR for almost all the diagonal entries is greater than 30 percent,
showing that both R and MR suggest correlation between consumption. The off-diagonal
entries of Table 10 correspond to calculated R and MR for different countries which
should not have genuine correlation. Most of the off diagonal entries of MR statistics
are smaller than 30 percent in magnitude indicating that there is no correlation between
two series. On the other hand the R statistics is above 95 percent even for the non-
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Table 10: Correlation between income and consumption of various countries
Australia Austria Belgium Denmark Finland France Greece Ireland Italy

Australia
MR 0.51 -0.26 0.1 0.22 0.18 0 0.11 0.31 0.01

R 1 0.99 0.98 0.98 0.98 0.99 0.98 0.99 0.98

Austria
MR 0.11 0.59 0.31 0.15 0.1 -0.18 0.28 0.34 0.22

R 1 1 1 0.99 0.99 1 0.99 0.98 0.99

Belgium
MR 0.23 0.08 0.36 0.2 0.42 0.19 0.3 0.32 0.53

R 1 1 1 0.99 0.99 1 0.99 0.98 0.99

Denmark
MR 0.24 0.02 0.28 0.72 0.23 0.23 0.14 0.19 0.19

R 0.99 0.99 0.99 0.99 0.98 0.99 0.98 0.98 0.98

Finland
MR 0.41 -0.18 0.21 0.15 0.73 0.17 0.16 0.23 0.36

R 0.99 0.99 0.99 0.98 1 0.99 0.99 0.98 0.99

France
MR 0.2 0.01 0.41 0.2 0.35 0.22 0.5 0.26 0.53

R 0.99 1 1 0.99 0.99 1 1 0.97 1

Greece
MR 0.17 -0.04 0.39 0.28 0.26 0.21 0.6 0.51 0.04

R 0.97 0.97 0.99 0.99 0.98 0.98 0.99 0.95 0.98

Ireland
MR 0.25 -0.15 0.14 -0.06 0.1 0.03 0.39 0.45 -0.01

R 0.98 0.96 0.95 0.95 0.95 0.96 0.94 0.99 0.94

Italy
MR 0.24 0.04 0.58 0.27 0.37 0.19 0.21 0.22 0.61

R 0.99 1 1 0.99 1 1 1 0.97 1

diagonal entries. This shows that R statistics over estimates strength of relationship
between two series.

10 Directions for Further Research

Classical regression techniques when applied to time series data often produce spurious
results. The conventional measures of relationship between variables e.g. t-statistics
and R-square depends on IID assumption and this assumption is often invalid for time
series. It has been proven that if two series contain unit root, the t-statistics and R-
square are biased toward non-rejection of relationship between time series and this bias
increases asymptotically (Granger and Newbold, 1974; Phillips, 1987). This problem cre-
ates difficulty to differentiate between correctly specified genuine economic relationship
and the spurious relationship. Correlation coefficient is a popular statistics in classical
econometrics since it provides quick idea of the strength of association among the two
variables. We have presented the evidences that spurious correlation exist even among
the stationary series. This means for time series models, in no case correlation provides
reliable measure of association because almost all of economic time series are serially
dependent. We developed a new measure of association MR which is robust to type and
strength of autocorrelation, type of stationarity and type of deterministic part in the
data generating process of the two series.
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