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Abstract: The object of these short notes is to give a set of convenient symbols to 
define the sample space for the different compositional vectors that can be 
arranged into a three-way array. For the exploratory analysis of three-way data, 
Parafac/Candecomp and Tucker3 are some of the most applied models for low-
rank decomposition of three-way arrays. Here, in addition to the relative 
geometry, is presented a concise overview as to how the elements of a three-way 
array can be transformed into compositional form and the relative geometry is 
given. 
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1. Introduction 
 
Compositional data (CoDa) consist of vectors of positive values summing to a unit, or in general, 
to some fixed constant for all vectors. They appear as proportions, percentages, concentrations, 
absolute and relative frequencies. Geometrically speaking, the simplex is the sample space for a 
compositional vector due to the nature of compositional data. The simplex has been studied as a 
Euclidean linear vector space [14] [5]. In these papers, most of the elements that were introduced 
by Aitchison in the 1980s [1] [3], such as perturbation and powering or orthogonal log-contrasts, 
had been organized into a systematic and coherent mathematical scheme. Recently, there have 
been additional developments of new tools for the representation of compositions and their 
exploratory analysis of the geometry of the simplex [6] [7] [8] [9]. Moreover, some important 
tools for developing mathematical and statistical models, consisting of the initial concepts of 
limit, convergence, derivates and integrals involving functions defined on the simplex are given 
by Egozcue et al. [10] [4]. 
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Through Gallo's papers [11] [12] it has been shown how three-mode analyses like the 
Parafac/Candecomp and Tucker3, can be used to obtain latent variables by compositional data, 
and that both methods yield a low-dimensional representation of the results. Like the Principal 
Component Analysis on two-way matrices of compositional data [2], a low-dimensional 
description of the three-way arrays has proved difficult to handle statistically because of the 
awkward constraint where the components of each vector must sum to unity. Undoubtedly, in 
order to examine the problems that potentially occur when a three-mode analysis on 
compositional data is performed, it is very important to define the sample space of these data. 
The aim of these short notes is to give a set of convenient symbols to define the sample space for 
the different compositional vectors that can be arranged into a three-way array. Thus, the sample 
space can be identified through a one-to-one correspondence with the possible outcomes of the 
observational or experimental process. 
 
 
2. Elements of simplicial geometry  
 
2.1 Three-way array definitions 
Let  
V  I  x J  x K( )  be a three-way array with I objects, J variables, and K occasions and generic 

element  vijk > 0  ∀ i, j,k . There are three types of slices referred to as I  x J( )  frontal  
Vk  with 

k = 1,...,K , I  x K( )  vertical  
Vj  with j = 1,..., J , and K  x J( )  horizontal  

Vi  with i = 1,..., I . 
These slices can be concatenated between them obtaining the following matricizing of the three-
way array as  

VA  I  x JK( ) ,  
VB  J  x IK( ) , and  

VC  K  x IJ( ) , i.e. 
 
VA = V1 … Vk … VK!" #$ , 

 
VB = V1

t … Vk
t … VK

t!" #$ , and 
 
VC = V1 … Vi … VI!" #$ . In addition, the three-way array  

V  can be 
broken up into vectors, called fibers. The different types of fibers are referred to as rows, 
columns and tubes. Thus,  

V  can be broken up into IK rows  v ik , JK columns  v jk , IJ tubes  v ij , 
with dimension 1 x J( ) , 1 x I( )  and 1 x K( ) , respectively. Each slice of a three-way array can be 
converted into a column vector by vec-operator [13] [15]. Thus, it is possible to arrange all the 
column vectors of a matrix underneath each other, for example let  

Vi  be the ith horizontal slice 
the 

 
vec Vt

i( ) = vi = v i1 … v ik … v iK!" #$ , so it is the ith row of  
VA . 

 
2.2 Basics concept 
Let Sk

J  be the simplex space with dimension J −1, defined as 

 
Sk
J = v•k = v•1k ,…,v•Jk( ) :  v•1k > 0,…,v•Jk > 0; v• jkj∑ =κ{ } ,  

where κ  is a given positive constant, which is usually 1 or 100, depending on whether the 
variables are measured in part per unit or as percentages, respectively. A simplex element, 
v•k ∈Sk

J , is called composition, and its components v• jk  ( j = 1,…, J ) are called parts of v•k . 
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Definition 1: Let  v•k  be a row of the frontal slice  
Vk , its closure is defined as 

 
v•k =  v•k( ) = κ v•1k / v•k ,…,κ v•Jk / v•k( ) = κ v•1k / v• jkj∑ ,…,κ v•Jk / v• jkj∑( )  where  .  is 

the norm of vector. The operator    is called the κ -closure operator. 
 
All the fibers of a three-way array  

V  can be transformed into compositions by the closure 
operator   , but it would really only make sense to do this for the objects. Thus, it is applied to a 
row of  

Vk   k = 1,…,K( ) , it then defines a transformation ℜ+
J → Sk

J , where Sk
J  is previously 

defined. 
Afterwards, we proceed to indicate the IK rows of three-way array as compositions. Thus, for 
each frontal slice Vk   k = 1,…,K( )  we have I compositions with the relative sample space Sk

J  

 k = 1,…,K( ) . Therefore, in each simplex Sk
J  there are I points with coordinates  v1k…v ik…v Ik . 

In accord to the two basic operations, denoted by ⊕  and   , namely perturbation and power 
transformation or powering, it is possible to introduce the following basic operations [3].  
 
Definition 2: Let v ik , v i ' k  be compositions in Sk

J . Perturbation, denoted as ⊕ , is defined as 

 v ik ⊕ v i ' k =  vi1k vi '1k ,…, viJk vi ' Jk( ) . 
 
Definition 3: Let v ik  be composition in Sk

J  and α ∈ℜ . Powering, denoted as   , is defined as 

 α  v ik =  vi1k
α ,…, viJk

α( ) . 
 
With the perturbation operation and the power transformation, the simplex Sk

J  is a vector space 
with dimension J −1  on ℜ . The following properties make them analogous to translation and 
scalar multiplication. 
 
Property 1: Let v ik ,  v i ' k ,  v i '' k  be compositions in Sk

J  and α  a real constant. Then 
• (associative) v ik ⊕ v i ' k( )⊕ v i '' k = v ik ⊕ v i ' k ⊕ v i '' k( ) ; 
• (commutative) v ik ⊕ v i ' k = v i ' k ⊕ v ik ; 
• (opposite element)   v ik ⊕ −1 v i ' k( ) = v ik ! v ik = η ; 
• (neutral element)  η =  1,…,1( ) = 1 / J,…,1 / J( ) ; 
• (distributive)  α  v ik( )⊕ α  v i ' k( ) = α  v ik ⊕ v i ' k( ) ; 
• (unit)  1 v ik( ) = v ik . 

 
Note that we handle the operations ⊕ ,  !  and    in the simplex formally like we do with the 
standard vector operations +, - and x in multidimensional real space. 
 
2.3 Simplex spaces for objects observed across the occasions 
In three-way arrays, it is also noticed that the same object is observed on several occasions, for 
example the data of ith object are arranged in the horizontal slice  

Vi , and often the values that 
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the object assumes on the different occasions are plotted in the same space as trajectory. In this 
case, for each object K points are plotted and linked between them in the same real space ℜ+

J . In 
the same way, if the rows of a horizontal slice are compositions its sample space can be defined 
as SJ , and for the representation of each composition K points are linked between them to have 
the trajectory of each composition through the K occasions. 
On the other hand, often each object observed on several occasions is often summarized in a real 
space with only one point. In this case, by vec-operator, vec  . ( ) , the horizontal slices can be 
vectored. This operator can be applied to the horizontal slices before or after the closure 
operator. Thus, it is possible to define the following two vectors: 
 

 
vi =  vec Vi

t( )( ) = κ vi11 / vi ,…,κ viJ1 / vi …κ vi1K / vi ,…,κ viJK / vi( ) = v i1 … v ik … v iK"# $%  

 

 
vi = vec  Vi

t( )( ) = κ vi11 / v i1 ,…,κ viJ1 / v i1 …κ vi1K / v iK ,…,κ viJK / v iK( ) = v i1 … v ik … v iK"# $%  

 
The 

  vec  . ( )( )  defines a transformation ℜ+
JK → SJK , with 

  
SJK = v• = v•11,…,v•J1 … v•1K ,…,v•JK( ) :  v• jk > 0 for all elements; v• jkk∑j∑ =κ{ } .  

By contrast, the 
 vec   . ( )( )  defines before a transformation of each single vector  v•k  a 

transformation in the simplex space kℜ+
J → Sk

J , then by vec-operator we have the simplex space 

 
S1
J x…xSk

J x…xSK
J = Sk

J

k=1

K

∏ = SJK .  

In accordance with the Definitions 2 and 3, it is possible to verify the Property 1 for the ternary 

 S
JK ,⊕,( )  and  

SJK ,⊕,( ) . Besides, to investigate the dimension of the vector spaces SJK  and 

 SJK  the additive log-ratio transformation (alr) can be used [3].  
 
Definition 4: Let vi  and  vi  be a compositional vector and a vector with K juxtaposed 
compositional vectors, respectively. The transformation alr vi( ) : SJK →ℜJK −1 ; is defined as 

 
alr vi( ) = log vi11

viJK
,…, viJ1

viJK
…

vi1k
viJK

,…, viJk
viJK

…
vi1K
viJK

,…,
vi J −1( )K

viJK

"

#$
%

&'
.  

In a similar way, the transformation  alr vi( ) :  SJK →ℜK J −1( ) ; is defined as 

 
alr vi( ) = log vi11

viJ1
,…,

vi J −1( )1

viJ1
…

vi1k
viJk
,…,

vi J −1( )k

viJk
…

vi1K
viJK

,…,
vi J −1( )K

viJK

"

#$
%

&'
. 

 
Proposition 1: Let be v*i ∈ℜ

JK −1 , the transformation alr vi( ) : SJK →ℜJK −1  is one-to-one if the 
inverse additive log-ratio transformation alr−1 vi( )  is 

 
alr−1 v*i( ) =  exp v*i11,…,v*iJ1 … v*i1k ,…,v*iJk … v*i1K ,…,v*i(J −1)k ,0( )"# $% . 
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In a similar way it is possible to introduce the additive log-ratio for  vi .  
Proposition 2: Let be  v

*
i ∈ℜ

K J −1( ) , the transformation  al̂r vi( ) :  SJK →ℜK J −1( )  is one-to-one if 

the inverse additive log-ratio transformation  al̂r
−1 vi( )  is: 

 

 
al̂r−1 v*i( ) =  exp v*i11,…,v*i J −1( )1,0( )"

#
$
%… exp v*i11,…,v*i J −1( )1,0( )"

#
$
%… exp v*i11,…,v*i J −1( )1( )"

#
$
%{ }  . 

 
Both alr  and al̂r

 
transformations are isomorphism of vector spaces. 

 
Proof. The alr−1 alr vi( )( ) = vi , then for any composition in the simplex space SJK , the additive 
log-ratio is a one-to-one transformation in the real space ℜJK −1 . On the other hand, the 
isomorphism requires that, for all vi ,vi ' ∈S

JK , and α,β ∈ℜ ,  

 alr α  vi( )⊕ β  vi '( )$% &' = α ⋅alr vi( ) + β ⋅alr vi '( )  
which holds from Definitions 2 and 3. 
 
These results can be easy to verify as to  al̂r vi( )  too. In fact, the  alr

−1 alr vi( )( ) = vi  then by the 

al̂r  transformation in the simplex space  SJK  are transformed into one point in the real space 
ℜK J −1( ) . Besides, the isomorphism for all  vi , vi ' ∈ S

JK , let be α,β ∈ℜ , requires that 

 al̂r α  vi( )⊕ β  vi '( )$% &' = α ⋅al̂r vi( ) + β ⋅al̂r vi '( )  
which holds again from Definitions 2 and 3. 
 
Definition 5: Given a compositional vector  vi ∈S

JK  a subcomposition  v
s
ik  with J parts is 

obtained applying the closure operation to a subvector  v ik  of  vi :  v
s
ik =  v ik( ) . 

 
In compositional analysis an important feature is that the ratio of any two components of a 
subcomposition is the same as the ratio of the corresponding two components in the full 
composition.  
It is possible to show that each subvector  v ik  of  vi  is equal to the vector of the juxtaposed 
subcompositions  v

s
ik  given by applying the closure operation to the subvector  v ik  of  vi : 

 vi = v i1 … v iK!" #$ =  v i1( )… v iK( )!" #$ . 
From a geometrical point of view, it is possible to observe that each subcomposition  v ik  of  vi  is 
a projection of  vi  in Sk

J . In other words, a subcomposition can be regarded as a composition in a 
simplex of lower dimension than that of the full composition. Thus, the simplex spaces Sk

J  

 k = 1,…,K( )  are the subsimplexes of SJK . 
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