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In this paper, the generalized inverse Weibull distribution including the expo-
nentiated or proportional reverse hazard and Kumaraswamy generalized inverse
Weibull distributions are presented. Properties of these distributions including the
behavior of the hazard and reverse hazard functions, moments, coefficients of vari-
ation, skewness, and kurtosis, B—entropy, Fisher information matrix are studied.
Estimates of the model parameters via method of maximum likelihood (ML), and
method of moments (MOM) are presented for complete and censored data. Numer-
ical examples are also presented.
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1 Introduction

The inverse Weibull distribution can be readily applied to a wide range of situations includ-
ing applications in medicine, reliability and ecology. Keller et al. (1985) obtained the inverse
Weibull model by investigating failures of mechanical components subject to degradation. Cal-
abria and Pulcini (1990) computed the maximum likelihood and least squares estimates of the
parameters of the inverse Weibull distribution. They also obtained the Bayes estimator of the
model parameters as well as confidence limits for reliability and tolerance limits. See Calabria
and Pulcini (1989, 1994), and Johnson et al. (1984) for additional details. Khan et al. (2008) pre-
sented some important theoretical properties of the inverse Weibull distribution. Samanta and
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Bhowmick (2010) presented a deterministic inventory system with Weibull distribution deteri-
oration and ramp type demand rate. The inverse Weibull (IW) cumulative distribution function
(cdf) is given by

F(x;a,ﬁ):exp[—(a(x—xo))B], x>xp,00>0,8>0, (1)

where o, xo and 3 are the scale, location and shape parameters, respectively. Often the pa-
rameter xo is called the minimum life or guarantee time. When o = 1 and x = xy + «, then
F(a+x0;1;8) = F(a+4x0;1) = e~ =0.3679. This value is in fact the characteristic life of the
distribution. In what follows, we assume that xy = 0, and the inverse Weibull cdf becomes

F(x;o,B) =exp|—(ox)™P],  x>0,a>0,8>0. )

Note that when o = 1, we have the Fréchet distribution function. The inverse Weibull probability
density function (pdf) is given by

foo,B)=paPx P lexp—(ax)P], x>0,0>0,p>0. 3)

When 8 =1 and 8 = 2, the inverse Weibull distribution pdfs are referred to as the inverse
exponential and inverse Raleigh pdfs, respectively. The k™ raw or non central moments are

given by
E(x") = m;f/ﬁ) for B> k. 4)

Note that E(X*) does not exist when 8 < k. See Johnson et al. (1984).

This paper is organized as follows. Section 2 contains some basic utility notions. In sec-
tion 3, the exponentiated or proportional inverse Weibull (PIW) and Kumaraswamy general-
ized inverse Weibull distributions are presented. The mode, hazard function and reverse hazard
function are also presented in section 3. Glaser’s Lemma is applied to the PIW distribution to
determine the behavior of the hazard function. In section 4, the moments, entropy measures
and Fisher information are presented. Estimation of the parameters of the PIW distribution via
the methods of moments and maximum likelihood as well as numerical examples for complete
and right censored data are presented in section 5. Section 6 deals with Kumaraswamy gener-
alized inverse Weibull distribution. The mode, hazard function, reverse hazard function, mo-
ments, Shannon entropy and estimates of the model parameters for censored data are presented.

2 Basic Utility Notions

In this section, some basic utility notions and definitions are presented. Suppose the distribution
of a continuous random variable X has the parameter set 0% = {6,,6,,---,0,}. Let the pdf of
the random variable X be given by f(x;0*). The hazard function of X can be interpreted as the
instantaneous failure rate or the conditional probability density of failure at time x, given that
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the unit has survived until time x, see Shaked and Shanthikumar (1994). The hazard function
h(x;0%) is defined to be

e P(xSng—i—Ax)_—F,(x;B*)_ f(x;0%)
M8 ) = i T — o)~ Fe)  T-Fx6) )

where F(x;0*) is the survival or reliability function. The concept of reverse hazard rate was
introduced as the hazard rate in the negative direction and received minimal attention, if any,
in the literature. Keilson and Sumita (1982) demonstrated the importance of the reverse hazard
rate and reverse hazard orderings. Shaked and Shanthikumar (1994) presented results on reverse
hazard rate. See Ross (1983), Chandra and Roy (2001), Block and Savits (1998) for additional
details. We present a formal definition of the reverse hazard function of a distribution function
F. The reverse Hazard function can be interpreted as an approximate probability of a failure in
[x,x+ dx], given that the failure had occurred in [0, x].

Definition 2.1. Let (a, b), —oo < a < b < oo, be an interval of support for F. Then the reverse
hazard function of X (or F) att > a is denoted by Tr(t) and is defined as

d f(1;67)
£;0")= —logF(t;0") = . 6
w(150°) = g loF(30%) = s ©)
Some useful functions that are employed in subsequent sections are given below. The gamma
and digamma functions are given by ['(x) = [5°t* 'e™"dr and ¥(x) = ?(—(;:)) respectively, where

' (x) = [ (logt)e " dt is the first derivative of the gamma function.

Definition 2.2. The n'"-order derivative formula of gamma function is given by:

r0(s) = |2 (logz)" exp(~2) d:. )

This derivative will be used frequently in this paper. The lower incomplete gamma function
and the upper incomplete gamma function are

y(s,x):/ r*le'dr and F(s,x):/ r~le ! dt, (8)
JO X

respectively.

3 Generalized Inverse Weibull Distributions
The proportional inverse Weibull (PIW) distribution has a cdf given by

G(x;a,B,7) = [F(x)]” = exp|—y(ox)P], fora>0,>0,y>0,andx>0. (9
The corresponding pdf is given by

g(x;a,B,y) = afy(ax) P~ exp[—y(ax)P], (10)
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fora>0,B>0,y>0,andx > 0.

Jones (2009) explored the background and genesis of the Kumaraswamy distribution (Ku-
maraswamy (1980)) and, more importantly, made clear some similarities and differences be-
tween the beta and Kumaraswamy distributions. Among the advantages are: the normalizing
constant is very simple; the distribution and quantile functions have simple explicit formula
which do not involve special functions; explicit formula for moments of order statistics and
L-moments. However, compared to Kumaraswamy distribution, the beta distribution has the
following advantages: simpler formula for moments and moment generating function (mgf);
a one-parameter sub-family of symmetric distributions; simpler moment estimation and more
ways of generating the distribution via physical processes. Cordeiro and Ortega (2010) among
others studied the Kumaraswamy Weibull distribution and applied it to failure time data.

Kumaraswamy (1980) in his paper proposed a two-parameter distribution (Kumaraswamy
distribution) defined in (0, 1). Here we will refer to it as Kum distribution. Its cdf is given by:

Fxa;b)=1—(1—x)", xe(0,1),a>0,b>0. (11)
The parameters a and b are the shape parameters. The Kum distribution has the pdf given by:
f(xa,b) = abx* (1 —x)"!, x€(0,1),a>0,b>0. (12)
The Kum-Generalized Inverse Weibull (KGIW) cdf is given by

Gxo,B,A,90) = 1—(1—F'(x;a,B))?
= 1—{1—exp[-A(ax) P]}?,

forx>0,a>0,8>0,4>0,and ¢ > 0. The corresponding KGIW pdf is given by

g, B.A,9) = aPre(ax) P exp[—A(ax) P]{1—exp[—A(ax) P]}o!

forx>0,a>0,8>0,4>0,and ¢ > 0.
3.1 Mode of the Proportional Inverse Weibull Distribution

Consider the PIW distribution. Note that,

Ing(x; @, B,7) = In(By) — (14 ) In(owx) — y(owx) .

Differentiating Ing(x; o, B,¥) with respect to x, we obtain

8lng()s;xvﬁa’}/> _ _Hxﬁ_i_aﬁ,}/(ax)—ﬁ—l
-B

Now, set equal 0 and solve for x, to get

- (280

dlng(x;a,B,7)
ox
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— 1 .
Obviously, when 0 < x < (alfgy)ﬁ,alng(gf’ﬁ’ﬂ >0, so g(x; &, B,7) is increasing, and when x >
— 1
(aljgy)ﬁ, g(x;a, B,y) is decreasing, so g(x; @, B, ) attains a maximum when xy = (aljﬁﬁy)
Note that xq is the mode of PIW distribution.

3.2 Hazard Function

The hazard function of the PIW distribution is given by

g B.y) _ apylax) P lexp[—y(ox)F]
G(X;OC7B7Y) 1 —exp[—y(ax)—ﬁ] 7

AG(X;aﬁﬁa }/) =

fory>0,00>0,8>0,x>0.
We study the behavior of the hazard function of the PIW distributions via Glaser (1980) lemma
. Note that

TIG(XQ‘X’ﬁJ’) = x)
g’(x a.B.y)
glxa,B.y)

= a(1+B)(ax)" —afy(ax) P,

and
NG(x) = a?By(B+1)(ax) P2 — (14 B)(x) .
Let n;(x) =0, we get xo = é(ﬁy)%. So when 0 < x < xgp, NG (x) > 0, N;(x0) = 0 and when
x > x0, N (x) < 0. So the hazard function is upside down bathtub shape.
3.3 Reverse Hazard Function

The reverse hazard function for the PIW distribution is given by

TG(X;avﬁaY) = m = Otﬁj/(ax)fﬁflv

fory>0,00>0,8>0,x>0.

4 Moments, Entropy and Fisher Information

In this section, we present the moments and related functions for the proportional inverse Weibull
distribution. The concept of entropy plays a vital role in information theory. The entropy of a
random variable is defined in terms of its probability distribution and can be shown to be a good
measure of randomness or uncertainty. We present Shannon entropy and 3 —entropy for the PIW
distribution. Also, presented is Fisher information matrix for the PIW distribution.
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4.1 Moments

The moments of the PIW distribution are given by
| %-stwappax
0
= [ ey (o) P expl—y(o) Pax
0
o B—c
= Y-« CF( ,
B

where B > ¢. The variance is given by
62 = E(X?) —EX(X) = yP o2 [F(E) - FZ<E>} .

The coefficient of variation (CV) is given by

E(X°)

Yoo r(fs) -r2 (B

cv=2 -
: 7o (o)
TR (B
: r(%")

The coefficient of Skewness (CS) is given by

es - U5 IR i)

The coefficient of Kurtosis (CK) is given by

The graphs of the mean against 3 for values of & and y shows a decreasing mean for increasing
values of f3. Table 1 shows the mode, mean, standard deviation (STD), CV, CS and CK for
some values of the parameters o, B and y. From the table 1, we can see that as 3 increases,
the Mean, STD, coefficient of variation, skewness and kurtosis are all decreasing. Graph of the
mean against 3 for some values of the parameters ¢, and y shows a decreasing trend.

4.2 Shannon Entropy
Shannon entropy for PIW distribution is given by
H(g) = E[-logg(X)]
— [ ogglgtr)ax
= —afy[A+B+C],
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Table 1: Mode, Mean, STD, Coefficients of Variation, Skewness and Kurtosis

oa| B |y Mode Mean STD CV CS CK

1| 5| 1]09641925 | 1.164230 | 0.3657341 | 0.3141425 | 3.535072 | 48.09151
1| 6 | 2] 1.093991 1.267021 | 0.3173964 | 0.2505061 | 2.805566 | 24.67812
1| 8 | 3] 1.130436 1.250052 | 0.2238499 | 0.1790725 | 2.189270 | 14.16589
1|11 |4 ] 1.125375 1.203964 | 0.1514753 | 0.1258139 | 1.820604 | 10.10796
2 | 12| 5] 0.5679638 | 0.6035245 | 0.06910668 | 0.1145052 | 1.749809 | 9.468404
3113 |6 | 0.3804178 | 0.4019915 | 0.04223783 | 0.1050714 | 1.692484 | 8.979469
4 114 | 7| 0.2858669 | 0.3006762 | 0.0291897 | 0.09708017 | 1.645094 | 8.593978
5115 | 8] 0.2287533 | 0.2396567 | 0.02162252 | 0.09022286 | 1.605245 | 8.282494

where A, B and C are obtained below:

A

| 1og(eB) o) - expl—y(au) P

log(afy)

aBy

)




Electronic Journal of Applied Statistical Analysis 101

B — —(1+/3)/wlog(ax)(ax)*ﬁ*exp[—y(ax)*ﬁ]dx
= l+ﬁ/ log(x) exp[—yxPldxP

= (lx—[;ﬁy[/o logxexp(—x)dx—log}//oweXp[—x] dx],

using the fact that I"'(t) = [;"log" (x)x'~!exp(—x) dx, we obtain

14+
B=—- 1
aﬁz,y 0g7v,
and
C = —% °o(ch)*zB*lexp[—}/(ocx)*ﬁ]dowc
0
_
aBy

Finally, Shannon entropy reduces to

Hg) = ;3+2—log<a/3y>.

4.3 - Entropy

B-entropy is a one parameter generalization of the Shannon entropy. 3- entropy is defined by

(o) — _ [T B 3
HB(g)—B_l[l /Og (x)dx}, for f 1.
B-entropy for PIW distribution is given by
1 5 -
Hye) = g |1 [ @B PP el )|
‘%
= B 713 :L L..
Lett =yB(ox) P, s0x= (yﬁ) , then we have
1 [ Bﬁ+ﬁﬁ—ﬁ—1
Hye) = - bt [T ( ) expl—1]dr
’ -1 p
1 | 51 0f B~ 1-p-Bp [ Bpip-1_
= Pl l—aﬂ_lﬁﬁ_ly%ﬁl B /t b 1exp[—t]a’t}
- 0

- 1—aBIﬁBWIBB”BﬁBﬁF(B+%ﬁ1)].
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4.4 Fisher Information

The information (or Fisher information) that a random variable X contains about the parameter
0 is given by
B 2
1(0)=E|=—I X,0 .
(6)= | 3yos(s(x,6)
Now, if log(f(X, 0)) is twice differentiable with respect to 6, and under certain regularity con-
ditions (Lehmann (1998)), Fisher Information is given by
82
1(0) = ~Ea | 5slog((x.0) |

For the PIW distribution, the Fisher information (FI) that X contains about the parameters 8 =
(a,B,7) are obtained as follows: Using the pdf g(x; o, 3,7),

Ing(x;a,B,7) =Inafy— (14 B)In(ax) — y(ox)~P.

We have the following partial derivatives:

dngwoBy) B, s g
(9(1 - (X+x ﬁ'}/a )

Ilngx B _ 1y o)+ y(ax) P In(a),

9B B

alng(X;O@ﬁ)’Y) 1 -B
—_— = - — (00X ,
7 y (orx)

azlng(X;aaﬁv’}/) _ ﬁ —B-2 -B
a2 —z ¢ B(1+B)yx",

82 lng(a.xl;(zxaﬁa Y) — _[312 _ '}/(ax)_ﬁ lnz((XX),

Phnglxa,By) 1
97> oy

I’Ing(x; o, B,y) _
Jadp

—é +x PBya P~ (—In(ax) + ;3),

aZIHg(X;aaﬁ7’}/) -B -B-1
dudy =x"pa ’
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and

?Ing(x;a,B,y)

Then,

_p[ne(X;a.B,7)
da?

|

*Ing(X;,B,7)

- [ op?

9%Ing(X; e, B,7)

|

- [ 972

g [821%:9(;((;9(;,[3,)/)}

_p[2PIme(X;a.B,7)

dady

|

Iy

|

_‘/Ow <052 —a P21 +ﬁ)yxﬁ) gxa,B,y)dx

(ox) P In(ax).

B

B(1+p)

o2

BZ
@7

1

I
I

1

BB

/Oooxexp(—x)d — 52,

1
B2

+7(ox)™P 1n2(ax)>

"

14T (2) =2 (2) Iny+In?y

-

BZ

= 9%Ing(x;, B,7)

9

dY?

ofye”
(ax)ﬁ+1

[["(2) —2Iny-T"(2) +1n 7]

(o) 7P 1n2(ax)> g(x;a,B.y)dx

(o) P

dx

g(x; o, B,y)dx

= = [ o) P expl—yto) Plas

1
7

)

_/°° 9*Ing(x; 0, B,7)
0

hia

dadf

Iny—T"(2)

o

Ny 2 Ing(x:.B.)
0

0

B

oy

)

9

glx;o, B,y)dx

B

dady

glx;so, B,y)dx

o) -B
LSO s Rt

(oux)B+1

_/wx*ﬁﬁa*"*laﬁﬂa@*‘“exp[—Y(aX)*"]dx

dx

103
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and

ngX;a,B,7)] = d?Ing(x; e, By)

- /0°° (c0x) P In(ox) aBy(e) P~ expl—y(owx) P dx

= Bly/omt[lnt —Iny]exp[—t]dt

I'2)—Iny
- By
Now, the Fisher Information Matrix (FIM) for PIW distribution is given by:
_E leog&gzz;aﬁﬂ) _E azloggggg,ﬁ-y) _E leoggt(x);;;c-ﬁﬂ)
I(a,B.y)=| —E 9zlogag[(;§g,ﬁ,y) _E 3210g%(;§2;a,ﬁ,7) _E 9zlog§(ﬁ?;;;uﬁ,7) 7
_E 3210%5%56,1377) _E 3210g§%bml377) _E 3210gg(§?;2;a7ﬁ77)

where the entries are given by

1(171):/;, 1(1,2):1(2,1):“’7:'(2)7
1(1,3):1(3,1):_062,
/" _ , N n2
1(272):1+r(2) 2;2(2)1 y+in’y
['@2)—Iny

1(2,3)=1(3,2) = and 1(3,3):;2.

By
S Estimation of Parameters in the Proportional Inverse Weibull
Distribution

In this section, we obtain estimates of the parameters for the PIW distribution. Method of
moment (MOM) and maximum likelihood (ML) estimators are presented. Estimation of the
parameters of PIW distribution for complete and right censored data are presented.

5.1 Method of Moment Estimators

Let X1,X5,---,X, be an independent sample from the PIW distribution. The method of moments
estimators are defined as follows:
Lo

E(X/) ===
n

j:1727'”
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We have E(X/) = yé a’ F(%), so we have the following equations:

% all"(ﬁﬁl> = X,
v a‘ZF(B;2> _ ¢ ?_nlxiz’
¥P a3r(ﬁﬁ—3> A— :l—nlxi}

105

Then we can apply Newton-Ralphson method to obtain the solution. Let f(f) = 1“2(%)S2 —

F(%)X 2 then do the iteration

_ 5 S(B)
P =P g
to find B, say B. If a is known, then
B < aX )ﬁ
r(°5h)
When 7 is known,
] A~
BB
5! ')
X

5.2 Maximum Likelihood Estimators

Let X1,X5,---,X, be a random sample from a PIW distribution. Then the likelihood function is

given by

L = g('xl?"' 7xn;a7ﬁ7Y)

n

- <aﬁy>"<_1iaxi>-ﬁ-l-exp[—vDaxi)-ﬁ].

i=1

The log-likelihood function is given by

(oux;) 7P

=

InL =nIn(aBy)—(1+8)Y In(ox;) —y

i=1 i

1
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The normal equations are

dinL n A A 5
= ——(1 ~ y ’ 17[3 ! i=0
Ja ~ & (g BT (@) P o
dlnL L &
= 2o Yin(ax) +9Y [(ax) Pn(ax)] =0,
I B = i=1
and 3
InL n g
_ A\ B —
~ ox; 0,
7 7 ,:21( )
respectively. These equations reduces to
= &_ﬁ Zx;ﬁ

= il A&;zn: n(0x;)]

From the normal equations, we know that if o or ¥ is known, we can use Newton’s method to
solve for B numerically. If ¥ and 8 are known, we solve for o to obtain

()
o = .
yEx P

When «a and 8 are known, we solve for ¥ to get

™ Y IS

n

V=——"=
OF'Bin P

5.3 Numerical Examples

In this section, we provide several numerical examples to show and illustrate the flexibility of
the generalized inverse Weibull distribution for date modeling. Specifically, we consider three
data sets from Lawless (2003). The first set of data represents the number of million revolutions
before failure of each of 22 ball bearing in a life testing experiment. The data are: 17.88, 28.92,
33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12,
93.12, 98.64, 105.12, 127.92, 128.04, 173.40. The second data set represents the failure times
(in minutes) for a sample of 15 electronic components in an accelerated life test and are given
by: 1.4,5.1,6.3,10.8, 12.1, 18.5, 19.7, 22.2, 23, 30.6, 37.3, 46.3, 53.9, 59.8, 66.2. The third set
of data are the number of cycles of failure for 25 100-cm specimens of yarn, tested at a particular
strain level. The data are: 15, 20, 38, 42, 61, 76, 86, 98, 121, 146, 149, 157, 175, 176, 180, 180,
198, 220, 224, 251, 264, 282, 321, 325, 653.

These data sets can be modeled by the generalized inverse Weibull distribution. The MLEs
of the parameters @, § and y are computed by maximizing the objective function with the trust-
region algorithm via the NLPTR subroutine in SAS. The estimated values of the parameters ¢,
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B and 7, log-likelihood statistic, Kolmogorov-Smirnov statistics and the corresponding gradient
objective function (normal equations) under the generalized inverse Weibull distribution and
other alternatives including the generalized Lindley distribution are presented in table 2. The
generalized Lindley (GL) distribution (Zakerzadeh and Dolati (2009)) is given by

B*(Bx)*" (o + yx)e P

for(x:o, B,y) = 1 BTatl)

o, B,y>0.

The other models considered are the gamma, and lognormal distributions given by

foxa,B) = (T(a)) B> tePx

and

1 e% ( log;fli )2 .

Jin(xe o, B) =
2wax

After using NLPTR method, we have the following results for the generalized inverse Weibull
parameter estimates for the first set of data: First, we set our initial guess as o = 10, § = 1, and
Y = 10. Then after 18 iterations, we have & = 0.0983, B = 1.8158 and 7 = 16.8395. The value
of the log likelihood function is —110.9885. For the second set of data, we have & = 3.0001,
B = 0.8423 and ¥ = 18.6706. The value of the log likelihood function is —68.5351. For the
third set of data, we have the following: & = 0.1967, ﬁ =1.0111 and 7= 16.6980. The value of
the log likelihood function is —158.5789. These values together with the values of the gradient
object function for all three examples are presented in table 2.

5.4 Estimation in Right Censored Data from PIW Distribution

In this section, the maximum likelihood estimate (MLE) of the PIW distribution parameters ¢,
B, and y under type I censoring is presented. Suppose we have n independent positive random
variables X1,X>, - - ,X,, where X; has an associated indicator variable &; where 6; = 1 if X; is an
observed failure time and &; = 0 if X; is right censored, then the likelihood function is given by

L('x17-x27 X 9) = HgSi(xi;a7ﬁ7y)(1 - G('xi; a7ﬁ7,}/))176
i=1

where 6 = («, B, 7). The log-likelihood function is given by

n

InL(xy,x2, - ,Xu30 Z 5 In[g(xis0,B,7)]+ (1 — 5i)1n[G(x,~;oc,B,y)]] ,

i=1

that is,

i [6 In(aBy) — &(B + 1)In(ox;) — &y(ax;) P — (1 —6)In[1 — exp[—y(ocx,-)*ﬁﬂ] :

i=1
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Table 2: Estimates, Log-likelihood and Kolmogorov-Smirnov Statistic

Data set Model o B Y LL K-S W\w W\m W\w
I (n=22) PIW 0.0983 1.8158 16.8395 -110.9885 0.091  -0.00000111  -0.000003387 0.000000214
GL 0.0987 1.3708 0.09371 -108.6875 0.127 0.00000032 0.0000000579 0.000000327
Gamma  0.0637 1.5646 - -108.5738 0.116 0.00000055 -0.000000044 0.000000028
Lognormal 3.1268 1.6732 - -109.3792 0.176  0.000000032  0.0000000652 0.000000342
I (n=15) PIW 3.0001 0.8423 18.6706 -68.5351 0.091  0.000000238 0.000000518  -0.00000004848
GL 0.0654 1.2056 0.0851 -64.1001  0.102  0.000000044 0.000000479  -0.00000000433
Gamma  0.0531 1.4434 - -64.1880  0.100  0.0000000032  0.000000017  0.00000000392
Lognormal 2.9295 1.0599 - -65.6200 0.164 -0.0000005367  0.0000000359  -0.00000000043
III (n=25) PIW 0.1967 1.0112 16.6980 -158.5789 0.121 -0.000006375  -0.000000948 0.0000000000
GL 0.0134 1.5250 0.0185 -152.3741 0.141 0.0000000678  0.0000000896  0.0000000034
Gamma  0.0113 1.7964 - -152.4432 0.137 0.0000002340 -0.0000000044  0.0000000025
Lognormal 4.9129 0.9031 - -154.110  0.156  -0.000000523  -0.0000000361  0.00000000038
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The MLEs § = (&, B, ) are obtained as the solution of the following system of equations:

21(6 n [, 5 16 xi) P xih(x;
825) = ZZZI -— o “r&'ﬁ’}/(axi) B 1xi+( )ﬁ’}ll(f‘h()xl) ( )] =0,
ANO) _ w8 s g (1= 8)h0a)y(o) Pin(ax) |
2B l; E 8iIn(ax;) 4 8iy(ax;) P In(ax;) + T~ () ] 0,
ae &ls . B (1= &)h(x)(ax) P |
v ; K o) 1= h(x;) ] >

where h(x) = h(x; &, B,7) = exp|—y(ox)P]. The system does not admit any explicit solution,
therefore the ML estimates = (&, ﬁ, ) can be obtained only by means of numerical proce-
dures.

Under the usual regularity conditions, the well-known asymptotic properties of the maximum
likelihood method ensure that \/n (§ — ) —4 N(0,X¢), where Zo = [I(0)]~! is the asymptotic
variance-covariance matrix and I(0) is the Fisher Information Matrix, whose entries were cal-
culated earlier.

6 Generalization via Kumaraswamy Distribution

In this section, we present results on the generalized inverse Weibull Distribution via the Ku-
maraswamy distribution. In particular, we derive the probability density function (pdf), cumula-
tive distribution function (cdf), moments, and some additional properties.

6.1 Cumulative Distribution and Probability Density Functions

The cdf and pdf of the Kumaraswamy proportional inverse Weibull (Kum-PIW) distribution are
given by

Gk(X;aaﬁ’,}/’l?(P) = Gk()C)
— 1-[1-G*w)*
= 1—{l—exp[-yA(ax) F]}?,

and

gk(x;avﬁ/%kv(p) - gk(x)
= aByAe(ox) P exp[—yA (ox) PI{1 —exp[—yA(ax) P3P,

foraa>0,B>0,7y>0,A >0, and ¢ > 0 respectively.

6.2 Mode of Kum-PIW Distribution
To obtain the mode of the Kum-PIW distribution, we solve the equation W =0 for

x. Note that

Inge(x) = In(aByAe)—(1+p)In(ax) —yA(x) P + (¢ —1)In{1 —exp[—yA (ax) P]}.
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The derivative of Ingy(x; o, B,7,A, @) with respect to x is given by

dlng(x) _ +ﬁ (¢ — D {—exp[—vA(ax) PlaByi(ax) P!}
== = +aByA(ox) Py | expl_yA(ax)F] .

Now 21nsx(xa.B.v.2.9)

7 = 0 implies
—(1+B){1 —exp[—y2 () P1} + ByA (o) P {1 — pexp[-yA (ax) P]} = 0.
When ¢ = 1, the above equation reduces to:
{1 —exp[—yA(0x) P} [BYA(ax) P —1-B] =0,
o BByA

1+
A = 1. When ¢ # 1, we can use numerical method to solve for the mode.

1
and we obtain x = ( ) p , which the same result as the mode of PIW distribution when

6.3 Hazard Function

The hazard function of the Kum-PIW distribution is given by

gk(xa, B,7,4,
R

aByAe(ax) P~ exp[—yA(ax)~F]
1 —exp[—yA (ox) 7P|

il

fora>0,8>0,1>0,y>0,and ¢ > 0. We can apply Glaser’s Theorem to see that the hazard
function of Kum-PIWD has an upside down bathtub shape (UBT).

6.4 Reverse Hazard Function

The reverse hazard function of the Kum-PIW distribution is given by

gk(x:a,B,7,4,0)

Gr(x;o, B, A, 0)

(Xﬁ}/ﬂ,(p((xx)_ﬁ_l [—7A(ax) 5]{1 [—7A(0x) ﬁ]}(p 1
1—{1—el-7Max)F]1e ’

TGk(X;(X,B,'}/,A,(P) =

fora>0,8>0,A>0,y>0,and ¢ > 0.

6.5 Moments

The ¢ non-central moment of the Kum-PIW distribution is given by
EX) = [ sanap.rig)ds
0

— /waCOCB'}/A«(P(le)_ﬁ—l exp[—yk(ax)—ﬁ]{l —exp[—yﬁt(ax)—ﬁ]}fp—l dx.
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Note that when ¢ = 1, this turns out to be the moments of the PIW distribution with parameters
o' =a,B’ =P and Y = yA, that is

E(X) = (yA)Fo~°T (’?) , forB>c.
When ¢ > 1 and an integer, note that
{1~ expl—7A (ax) P} Z ( D) nexpl- k() 7

and we have

E(X¢) = /Ooox"aﬁyﬂt(p(ax) P=Texp[—yA (ox)~ Z( 1)(—1)kexp[—yxk(ax)—ﬁ]dx

-1 _
= kzo/o xcocﬁqu)(ax)ﬁlexp[—yl(ax)ﬁ]<(pk >(—1)kexp[—y7tk((xx)ﬁ]dx

o—1 _ oo
= ];){aﬁylw(—l)k<¢kl>/0 x“(ox) Pt exp[—yA (1 +k) (o) P]dx}.

Let YA (14 k)(0x) P =1¢, then we have

E(X9) — qf <"’(_1();((p'<1)(1+k)51(y/1)é/0°°fﬁ‘lexp[—z]dt>

k=0
B ),

6.6 Shannon Entropy

Shannon entropy for Kum-PIW distribution is given by

H(g) = E[-Ing(X )}

= / Ingi(x) - gi(x

= A+B+C+D)
where
A = [ in(@prre)-glxdx
= In(aByre),

B= /0°° — (14 B)In(ox)afyro(ox) P~ exp[—yA (ox) 7P)-
{1 —exp[—yA (0x)P]}2  dx,
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—yA(ax) P gi(x)dx, and

D= [ (o= 1)In{1 —expl—1A (o) ]} i) d
0

We simplify the quantities A, B, C, and D. Note that

o—1

p- Y[ <1+ﬁ>aw<p("’ e

/ln (oex) - (ax) P~ Vexp[—yA (k4 1) (0ox) P]dx.

Let YA (k+ 1)(0x) P =1, then the quantity B can be rewritten as

_ B (-
B — k:ZO B( 9 /O lln7 — In(yA (1 +k))] exp[—1] dt
(p—l ((p 1)
= [ "(1) = In(yA(1 +k))].
k=0 ( )

Also, for the quantity C, we have

Cc

| -1en) P g ax

—aﬁ}’zlzfp/ow(ax}_zﬁ_leXP[-M(OCX)_ﬁ]{l —exp[—yA(ax) P} dx

o—1 _ oo
—aﬁyzlzq)k;) K(Pk 1>(—1)"-/0 (ox) P~ exp[—yA (1 + k) (ax) Pldx| .

Now, let YA (k+1)(ox) P =1t, then C reduces to

Note that

o=1[ (0=1\/_1\k ,oo
c - E [ frows]

(%W%ﬂ_

D= [ (o= 1)In{1 —exp[-¥A(e) ]} gux) v
0
o—1 -1
—(0— 2 ¢ _Dk.
o-naprio . (7))

/Om(ocx)_ﬁ_l In{1 — exp[—7A (ax) B]} - exp|=yA (1 + &) (ox) P dx.
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To simplify D, we let YA (k+1)(ox) P =1, then

(¢ ll)ikl)k '/0”1n<1—exp [—lik]) exp[—t]dt] :

We know that Taylor expansion for In(1 — x) is:

= (pz

oo n
n(l-x) = -y =, for x| < 1,
n

n=1

/Omln (1 —exp [ l—tl—k} ) exp[—t]dt = /0‘”; “M;Iﬁk]exp[;] a

so that

o0 - 1+k+n
— —Z/ exp[_(iuk)t]dt
n=1 0 n
B _°° 1+k
- A n(1+k+n)
5
a n=1"
and
TEDED R
D = 1 k (=Y -
=D L | L)
o1 [ (21 (—1)k K
= —(p—De¢ ‘ Y-
kg() 1+k =n
Finally, we obtain Shannon entropy:
H(g(x)) = —[A+B+C+DJ,
that is,
- ((P—l)( l)k 1 +11 ﬁ
Z( PR M [3 (1) =InfrA (1+0)]
—In(aByre).

6.7 Estimation in Right Censored Data from Kum-PIW Distribution

In this section, the maximum likelihood estimation (MLE) of the Kum-PIW distribution param-
eters &, B, ¥, A and ¢ under type I censoring is presented. Suppose we have n independent
positive random variables X1, X, --,X,, where X; has an associated indicator variable &; where
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0; = 1 if X; is an observed failure time and &; = 0 if X; is right censored, then the likelihood
function is given by

L=TTef (ot By 2 9) 1 Gl By )]~
The log-likelihood function is,
ink = 3 (8ol s 7.4, + (1 ~8)lnl1 ~Gelse 7.2,
that is
= Zn: Siln(afyre)—&(B + 1) In(ax;) + &1Inh(x;) + (¢ — &) In[1 — h(x;)]],

where h(x) = exp[—YA (ax)P].
The derivative of h(x;) with respect to the parameters are:

Ih(x;)

S0 = h)[ByA(ox) )
33(;;‘) —  h(x)[yA(ax) P In(ax)],
‘”(;(;i) = h(x)[-Alox) P,
93&60 = h(x)[~y(ox) P

The normal equations are given by:
al(6 o9

o~ B

ane) _ ¢
9B

a1(0)
Iy

au(e)
ar

ai(e)

¢ =

(x1, &) ByA(ox;) P~ 1x} =0,

— &1n(owx;) + B(xi, &) YA (0x;) P In(ax;)} = 0,

Il
——
> R m\s:o

Il
_

4 B(x;, 8)[~A(ax) P} =0,

I

—_

-+ B(xi, &) [~ y(ax) P} =0,

I 1

S|

- In[1 — h(x)]} =0,

where B(x;, ;) = %’ZSB"). These equations do not have a closed form solution. We can use
numerical methods to solve this problem.
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7 Concluding Remarks

Results on the generalized inverse Weibull and Kumaraswamy generalized inverse Weibull dis-
tributions are presented. This class of distributions contains a fairly large number of distributions
with potential applications to a wide area of probability and statistics. Properties of the general-
ized inverse Weibull and Kumaraswamy generalized inverse Weibull distributions including the
pdfs, cdfs, moments, hazard functions, reverse hazard functions, coefficients of variation, skew-
ness and kurtosis, Fisher information, Shannon entropy and -entropy are presented. Estimation
of the parameters of the models for complete and right censored data are also presented.
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