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1 Introduction

Multilevel models are generalization of regression models. Let yij be a dependent variable
of interest, and xij a vector of covariates for unit j in primary sampling unit (PSU) i.
The two-level linear mixed model (LMM) Goldstein (2003) is given by

yij = β′xij + bi + eij , i = 1, 2, . . . , c, j = 1, 2, . . . ,mi (1)

where c denotes the number of PSUs in the sample, mi denotes the number of observa-
tions selected in PSU i, β is the vector of unknown regression coefficients, bi is a PSU
specific random effect with variance σ2b , we assume that bi has an exponential distribution
with parameter µ, bi ∼ Exp(µ), and eij is assumed to be N(0, σ2e).

A complication of two-stage sampling is that values of a variable of interest may tend
to be more similar for units from the same PSU than for units from different PSUs. The
intraclass correlation (ICC), ρ, is a measure of the association between the observations
for members of the same PSU. It also describes the PSU homogeneity [Chapter 6]. If the
intraclass correlation is non-zero, the clustered nature of the design should be reflected
in the analysis procedure. One way of doing this is by fitting a multilevel model (MLM)
Goldstein (2003)[Chapter 1].

In practice the intraclass correlation is often quite small. For example, if units within
PSUs are no more homogenous than units over all PSUs, then the intraclass correlation
is zero. On the other hand, if units from the same PSU have equal values then the
intraclass correlation is 1. The intraclass correlation may take a negative value, but in
practice it is generally positive. If each PSU in the population contains M units, the
smallest possible value of ρ is −1/(M − 1). This occurs when the population is finite
with high heterogeneity within PSUs, and zero variance between PSU means [p.260],
show this for repeated probability sampling from a fixed finite population].

In this paper we will focus on modeling two-stage survey data. In the case of unequal
number of observations in each PSU, ρ is usually less than 0.1 when PSUs are geographic
areas and final units are households in these areas (Verma et al., 1980). When PSUs
are households and final units are people in households it is usually between 0 and 0.2
(Clark and Steel, 2002).

In ALZOUBI(2011), the methods were based on fitting a linear mixed model. Data
were assumed to be normally distributed. In this article, the purpose is to see if these
methods still work well if the assumption of normality is not justified. For this pur-
pose, the same methods applied in ALZOUBI(2011) will be applied to data that are
exponentially distributed rather than normal.

Exponential distribution is encountered as life-time distribution with constant hazard
rate µ. It is commonly employed in the formation of models of lifetime distributions, and
stochastic process in general. If X is an exponential random variable, the probability
density function of X is

f(x) =

{
µe−µx x ≥ 0,

0 otherwise.
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GOMRY noted that the mean and the variance of the exponential random variable X;
respectively are

E(X) = µ;

V ar(X) = µ2. (2)

The exponential distribution is the only continuous memoryless random distribution.

2 Fitting the linear mixed model

2.1 The model

Let X be the n × p design matrix, which is assumed to be of rank p, and Y =
(y′1, . . . ,y

′
c)
′ be the complete set of n =

∑c
i=1mi observations in the c groups, where

yi = (yi1, . . . , yimi)
′ is the observed vector for the ith PSU. Model (1) can also be written

as

Y ∼ N(Xβ,V), (3)

where V is a block diagonal matrix, V = diag(Vi, i = 1, . . . , c), and

Vi = σ2bJmi + σ2eImi , (4)

where Jmi is an mi × mi matrix with all entries equal to 1, and Imi is the mi × mi

identity matrix. β is the vector of unknown regression coefficients.

A simple special case of model (1) is the intercept-only model, this model includes
just a grand mean parameter, it is defined by setting xij to 1 for all i, j as

yij = β + bi + eij , i = 1, 2, . . . , c, j = 1, 2, . . . ,mi, (5)

where c denotes number of the sample PSUs, mi denotes the number of units selected
in PSU i, bi ∼ Exp(µ) is a PSU specific random effect and bis are independent and
identically distributed (iid) with variance σ2b , and eij is assumed to be N(0, σ2e). The
parameters σ2b and σ2e are the between- and within-PSUs variance components.

Observations for different units from the same PSU are correlated. It is assumed that
bi is uncorrelated with eij , and that bi and bi′ for i 6= i′ are uncorrelated. Therefore, as
a consequence Rao (1997),

V (yij) = V (bi) + V (eij) = σ2b + σ2e ,

Cov(yij , yij′) = V (bi) = σ2b for j 6= j′, and (6)

Cov(yij , yi′j) = 0 for i 6= i′.
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2.2 Likelihood Theory Estimation of var(β̂)

In this section we discuss the variances of the estimated regression coefficients and their
estimators. The estimated variance of the restricted maximum likelihood (REML) of β̂
is given by

v̂ar(β̂) =
(
X′V̂

−1
X
)−1

=
(∑c

i=1 x
′
iV̂
−1
i xi

)−1
,

(7)

where V̂i = σ̂2bJmi + σ̂2eImi . In the unbalanced data case, the intercept-only model given
by (5) simplifies to

v̂ar(β̂) =
{ c∑
i=1

mi

σ̂2e +miσ̂2b

}−1
= (

c∑
i=1

λ̂i)
−1, (8)

A confidence interval for β could be constructed using the Equation

(1− α)100%CI = β̂ ± t(df,1−α
2
)

√
v̂ar(β̂). (9)

However, it is not clear how the degrees of freedom in (9) should be defined for mixed
models. Faes et al. (2009) suggested using the effective sample size (ν) as degrees of
freedom for mixed models, with ν̂ = n

d̂eff(β̂)
. The effective sample size is the ratio of

the sample size to the design effect of β̂. Other approaches have been suggested, see for
example SAT and KR97. The method of Faes et al. (2009) has the advantage that it
extends naturally to non-Gaussian model, unlike the other approaches.

2.3 Huber-White Estimator of var(β̂)

Liang and Zeger (1986) suggested the generalized estimation equation (GEE) approach
as an alternative to the ML and REML approaches for modeling longitudinal and cross-
sectional data. The GEE approach to linear modeling of clustered data can use either
ordinary least squares (OLS) or generalized least squares (GLS).

The OLS estimator for β is defined by

β̂ols = (X′X)−1X′Y. (10)

When the observations from different PSUs are uncorrelated but the same PSU ob-
servations are correlated with common intraclass correlation ρ, the estimator β̂ols is
unbiased Scott and Holt (1982) with variance equal to

var(β̂ols) = (X′X)−1X′VX(X′X)−1. (11)

In general, V is not known and it can be estimated by V̂, therefore the estimated variance
for β̂ols is defined by

v̂ar(β̂ols) = (X′X)−1X′V̂X(X′X)−1. (12)
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The estimator v̂ar(β̂) in (7) is approximately unbiased provided that the variance
model (4) is correct. Otherwise, v̂ar(β̂) will be biased and inference will be incorrect. An
alternative to ML or REML estimates of var(β̂) is the robust variance estimate approach
described by Liang and Zeger (1986), in the context of modeling longitudinal data using
generalized estimating equations. This approach can be applied to the analysis of data
collected using PSUs, where observations within PSUs might be correlated and the
observations in different PSUs are independent.

This approach can be referred to as robust or Huber-White variance estimation (Hu-
ber, 1967; White, 1982). It will be used as an alternative approach to estimating var(β̂)
in this paper. The method yields asymptotically consistent covariance matrix estimates
even if the variances and covariances assumed in model (1) are incorrect. It is still
necessary to assume that observations from different PSUs are independent.

In Equation (7), the variance of β̂ was estimated by substituting REML estimates of

σ2b and σ2e into Vi. An alternative estimator of Vi is V̂
Hub
i = êiê

′
i, where êi = yi − x′iβ̂.

V̂
Hub
i is approximately unbiased for Vi even if (4) does not apply.

E
(
V̂
Hub
i

)
= E(êiê

′
i)

≈ E[(yi − x′iβ)(yi − x′iβ)′]

= Vi.

(13)

Note that

var(β̂) = var
((∑c

i=1 x
′
iV̂
−1
i xi

)−1(∑c
i=1 x

′
iV̂
−1
i yi

))
≈

(∑c
i=1 x

′
iV̂
−1
i xi

)−1(∑c
i=1 x

′
iV̂
−1
i ViV̂

−1
i xi

)(∑c
i=1 x

′
iV̂
−1
i xi

)−1
.

(14)

One way to construct a robust estimator of var(β̂) is to substitute the robust estimator

V̂
Hub
i in (14) as follows (Liang and Zeger, 1986),

v̂arHub(β̂) =
(∑c

i=1 x
′
iV̂
−1
i xi

)−1(∑c
i=1 x

′
iV̂
−1
i V̂

Hub
i V̂

−1
i xi

)
(∑c

i=1 x
′
iV̂
−1
i xi

)−1
.

(15)

When there is only an intercept in the model (xij=1), (15) becomes

v̂arHub(β̂) =

∑c
i=1 λ̂

2
i (ȳi. − β̂)2

(
∑c

i=1 λ̂i)
2

. (16)

Exact confidence intervals can then be calculated with degrees of freedom equal to c-1
MAC85.
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2.4 Restricted Likelihood Ratio Test (RLRT)

A better option is to use REML estimators to derive the likelihood ratio test (LRT)
statistic for testing H0 : σ2b = 0.

The problem of testing H0 : σ2b = 0 using the likelihood ratio test is discussed by
Self and Liang (1987) using ML estimators for the variance components. Self and Liang
(1987) allowed the true parameter values to be on the boundary of the parameter space,
and showed that the large sample distribution of the likelihood ratio test is a mixture
of χ2 distributions under nonstandard conditions assuming that response variables are
iid. This assumption does not generally hold in linear mixed models, at least under the
alternative hypothesis.

The restricted log-likelihood function is given by West et al. (2007)[p.28] as

`R = −1
2

[
(n− 1)log(2π) + log|V|+ log|X′V−1X|

+Y′V−1{I−X(X′V−1X)−1X′}V−1Y
]
,

(17)

where V = diag(Vi) and Vi are given by (4). Maximizing (17) with respect to σ2b and
σ2e gives the REML estimates of these parameters.

From (17), the restricted likelihood ratio test is given by

Λ = −2 log(RLRT ) (18)

= 2
MAX
HA `R(β, σ2b , σ

2
e)− 2

MAX
H0 `R(β, σ2b , σ

2
e).

The large sample distribution of the likelihood ratio Λ is a 50:50 mixture of χ2 distri-
bution with 0 and 1 degrees of freedom as the parameter values fall on the boundary of
the parameter space (Self and Liang, 1987).

3 Adaptive strategies

In this paper we consider two adaptive strategies. Both of them rely on the idea of
testing the variance component σ2b in model (1). If we reject H0 : σ2b = 0, we use the

first adaptive strategy which is utilizing the LMM-REML estimators of var(β̂) defined in
Equation (7). On the other hand, if we accept H0, then we assume that σ2b = 0 and we fit
the standard linear model with independent errors. This strategy is explained in Figure
1, where v̂arLM(β̂) is the estimator of varLM(β̂) using the LM strategy, v̂arLMM(β̂) is
the estimator of varLMM(β̂) using the LMM strategy and v̂arADM(β̂) is the adaptive
estimator.

The second adaptive strategy, explained in figure 2, is identical, except that the robust
Huber-White estimator v̂arHub(β̂) is used instead of v̂arLMM (β̂) when H0 is rejected.

The advantage of the adaptive strategy is that we use the simple linear model to derive
variance estimators, unless there is strong evidence that H0 : σ2b > 0. This has benefit of
simplifying the model and may also give tighter confidence intervals. However, it is not
clear whether the adaptive approaches will give valid confidence intervals for β, because
the confidence intervals assume non-adaptive procedures.



142 Al-Zou’bi

Figure 1: Flowchart explaining the adaptive procedure using the estimated variance ex-
tracted from the LMM

Figure 2: Flowchart explaining the adaptive procedure using Huber-White estimator
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4 Simulation study

A simulation study was conducted to compare the adaptive and non-adaptive methods
for estimating var(β̂) using PSUs with unequal sample sizes. Data were generated from
model (5), with different PSU sizes, mi, assuming bi is exponentially distributed. The
value of ρ was varied over a range of values of 0, 0.025 and 0.1. The number of PSUs,
c, was also varied over a range of values of 2, 5, 10, 25 and 50. mi generated randomly
from uniform distribution. The average number of observations per PSU, m̄ was varied
to be 3, 10 and 25 to be consistent with the balanced data case. For this purpose three
cases were used. In case 1, the number of observations was generated to be an integer
between 2 and 4 with average equal to 3 observations per PSU. In case 2, this number
varied from 5 to 15, with average equal to 10. Finally, in case 3, the average was 25,
with mi varying between 15 and 35. In each case1000 samples were generated. The
hypothesis H0 : σ2b = 0 was tested as described in Subsection 2.4 using the restricted
likelihood ratio test defined by

Λ = −2
( MAX
H0 `R −

MAX
HA `R

)
= ln(n) + (n− 1) ln(MSE0) +

∑c
i=1mi(ȳi. − ȳ..)2

MSE0

−(n− c)ln(MSEA)−
c∑
i=1

ln(η̂i)− ln
( c∑
i=1

(λ̂i)
)

−
c∑
i=1

λ̂i(ȳi. − β̂)2, (19)

where MSE0 = 1
n−1

∑c
i=1

∑mi
j=1(yij − y..)

2 is the mean squared error under the null

hypothesis, σ2b = 0 and MSEA = σ̂2e is the mean squared error under the alternative
hypothesis, σ2b > 0 and ηi = σ2e +miσ

2
b .

Tables 1 - 3 show the results for the unbalanced data case. They show the ratio of
the mean estimated variance of β̂, E(v̂ar(β̂))/var(β̂), using the four strategies of esti-
mation (ADM, ADH, LMM and Huber) with ρ = 0, 0.025 and 0.1. In all tables we
used β = 0 and significance level α = 0.1 for testing σ2b = 0. The tables show the
non-coverage rates of 90% confidence intervals for β and the average lengths of these
confidence intervals. The proportion of samples where H0 : σ2b = 0 was rejected are also
shown.

The variance estimators were generally approximately unbiased as most ratios were
close to 1. There were some exceptions. The first was the LMM, ADM and ADH
variance estimators, which tended to be biased when there were 10 or less sample PSUs
with all average numbers of observations per PSU for ρ=0. For ρ=0.025, it tended to
be biased when c ≤ 5 with all m̄ values and when there were 5 sample PSU with m̄ was
3. For ρ=0.1, it tended to be biased when c was 2 with all values of m̄.
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Non-coverage rates for β were close to the nominal rate of 10% when ρ=0 for all
methods except for the LMM method. The LMM non-coverage rates were a bit smaller
than the nominal rate when c=2 with all average numbers of observations per PSU. The
LMM non-coverage was good when there were 5 or more PSUs.

For ρ 6= 0, Huber non-coverage rate increases as the number of PSUs increases. For
ρ = 0, Huber non-coverage rate was close to 10.

For ρ=0, the LMM, ADM and ADH non-coverage rates were close to the nominal rate
for both values of σ, as in the normal data case (see ALZOUBI(2011), except when there
were small number of sample PSUs (10 or less) with all average numbers of observations
per PSU.

For ρ=0.025, the LMM and ADM non-coverage rates were much higher than the nomi-
nal rate for all sample PSUs with all average number of observations per PSU. Except
when there m̄ = 3 with values of c of 2 and 5. The ADH non-coverage rate was higher
than the nominal rate when there were 2 sample PSUs with m̄=25. In case of ρ=0.1,
the LMM and ADM non-coverage rates were much higher than the nominal rate when
c ≤10 and m̄=10 or 25, and when c=50 with m̄=3. The ADH non-coverage rate was
about the same as the nominal rate in most cases except when c=5 with all values of m̄
for ρ=0, when c=2 and 5 with m̄=25 and 3, respectively when ρ=0.025 and when c=2
with m̄=10 and 25, c=5 with m̄=25 and when c=50 with m̄=3 in case of ρ=0.1.

The ADM average lengths of confidence intervals for β were similar to the LMM
average lengths of confidence intervals for β for c ≥ 5 with all average numbers of ob-
servations per PSU for all values of ρ. When c=2, the ADM average lengths were about
6-12% shorter. The ADH average lengths of confidence intervals for β were similar to the
Huber average lengths of confidence intervals for β for all sample PSUs with all values
of m and ρ except when c=2, as the ADH average lengths were shorter than the Huber
average lengths of order about 30-65%.

The proportions of samples where H0 : σ2b = 0 is rejected were generally much higher
than 10% when ρ=0, and was very high 27% when c=5 and m̄=3. This might be be-
cause the PSU sizes in the unbalanced design have a wide range, for example; for m̄=25,
the PSU sizes vary between 15 and 35. Or this might be because of the distribution
of the RLRT. It was assumed that the distribution is a 50:50 mixture of χ2

0 and χ2
1

following Chernoff (1954) in the balanced and unbalanced designs. The 50:50 mixture
of χ2 distribution of the likelihood ratio test might not perform well in the unbalanced
designs because the response can not be divided into identically distributed sub-vectors
as in Stram and Lee (1994). This approximation may not be a very good approximation
in the unbalanced designs if the response is divided into small or moderate number of
sub-vectors, even if the responses are independent SONJA.

For ρ=0, the average length of the 90% ADH confidence intervals for β was shorter
than the Huber (about 35%) when there were 2 sample PSUs with all values of m̄. For
ρ=0.025, the average length of the 90% ADH confidence intervals for β was shorter than
the Huber (30-35%) when there were 2 sample PSUs with all values of m̄. For ρ = 0.1
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the average length of the 90% ADH confidence intervals for β was shorter than the Huber
(20-30%) when there were 2 sample PSUs with all values of m̄.

The proportions of samples where H0 : σ2b = 0 was rejected were higher than the
nominal rate (10%). Possible reasons why these proportions are higher than 10% are
discussed in Subsection 4.

Results on non-coverage and 90% confidence intervals length are also shown in graph-
ical form in Figures 3 - 5. In the graphs we also include the LM strategy of estimation so
that the effect of completely ignoring the clustered nature of the data can be examined.

Non-coverage rates for confidence intervals for β were close to the nominal rate of 10%
when ρ = 0 for all methods.

For ρ 6= 0, Huber non-coverage was close to 10% when there were 2 sample PSUs and
higher, otherwise. Whereas, the LMM, ADM and ADH non-coverage rates were high,
in general.
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Figure 3 shows that LM non-coverage was close to 10% when ρ = 0. It was very high
otherwise as shown by Figures 4 and 5. Hence, use of LM without at least checking
H0 : σ2b = 0 is not a viable strategy.

Figures 6 - 8 show that confidence intervals using the LM strategy are the shortest,
however this strategy is not viable because of its high non-coverage when ρ 6= 0. The
Huber based approach gives the widest confidence intervals in general. The ADM and
ADH confidence intervals are almost always similar to the LMM and Huber ones, re-
spectively. When there were 2 PSUs it is very clear that ADM and ADH confidence
intervals are much shorter than LMM and Hub confidence intervals, for all values of ρ.
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Figure 3: Confidence interval non-coverage rates (%) for different variance estimation
methods and various numbers of PSUs (c) and units per PSU (m) for intraclass
correlation (ρ) of 0.
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Figure 4: Confidence interval non-coverage rates (%) for different variance estimation
methods and various numbers of PSUs (c) and units per PSU (m) for intraclass
correlation (ρ) of 0.025.
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Figure 5: Confidence interval non-coverage rates (%) for different variance estimation
methods and various numbers of PSUs (c) and units per PSU (m) for intraclass
correlation (ρ) of 0.1.
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Figure 6: Confidence interval non-coverage rates (%) for different variance estimation
methods and various numbers of PSUs (c) and units per PSU (m) for intraclass
correlation (ρ) of 0.

5 Conclusion

i) Adaptive confidence intervals can perform poorly in designs with few sample PSUs.
In these designs, even a small intraclass correlation will substantially inflate the
variance of the mean, however the PSU-level variance component is unlikely to
be statistically significant even if the intraclass correlation is as high as 0.1. As
a result, when the number of PSUs (c) is 2 or 5, and the number of observations
per PSU (m or m̄) is 25 or more both of the adaptive estimators have higher than
desirable non-coverage when the intraclass correlation is non-zero, of the order of
15-20%. It appears that for these extreme designs, clustering must be allowed for
in variance estimates, even if it is not statistically significant.
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Figure 7: Confidence interval non-coverage rates (%) for different variance estimation
methods and various numbers of PSUs (c) and units per PSU (m) for intraclass
correlation (ρ) of 0.025.
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Figure 8: Confidence interval non-coverage rates (%) for different variance estimation
methods and various numbers of PSUs (c) and units per PSU (m) for intraclass
correlation (ρ) of 0.1.

ii) In comparing the Linear Mixed Model with the adaptive version (ADM), we find
that:

• Both the LMM and ADM approaches have close to nominal non-coverage,
except for extreme designs of the kind discussed in i. For these designs, the
adaptive and non-adaptive LMM methods both have high non-coverage. In
the case of the adaptive method, this is presumably because there is not
much power to detect the PSU-level variance component, even when it is
substantial. For the non-adaptive LMM, the problem seems to be that the
LMM confidence intervals are not exact and do not do well for small sample
sizes.
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• The ADM confidence intervals are noticeably narrower (10-20%) than the
LMM for c = 2 and 5, but there is not much to choose between ADM and
LMM for c=10 or more.

iii) In comparing the robust Huber-White approach with the adaptive version (ADH),
we find that:

• The Huber approach has close to nominal non-coverage in all cases. So does
the ADH approach, except for the extreme designs mentioned in i.

• The Huber method gives wide confidence intervals when c is small (2 or 5)
with order of 10-80% eventhough the non-coverage is close to the nominal
10%. This is because the degrees of freedom for this method is equal to (c-1).
ADH has much narrower confidence intervals (10-80%) , because its degrees
of freedom are equal to (n-1) rather than (c-1) if the PSU-level variance
component is not significant.

Recommendations
Designs with fewer than 10 PSUs, and a large sample size in each PSU should be avoided,
even if the intraclass correlation is believed to be low. Hence, we recommend ignoring
clustering if the PSU-level variance effect is insignificant.
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