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In this paper, we propose maximum likelihood estimators and Bayes es-
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1 Introduction

In life testing experiments, situations do arise when units are lost or removed from the
experiments while they are still alive; i.e, we get censored data from the experiment.
The loss of units may occur due to time constraints giving type-I censored data. In
such censoring scheme, experiment is terminated at specified time. Sometimes, the
experiment is terminated after a prefixed number of observations due to cost constraints

∗Corresponding authors: manustats@gmail.com

c©Università del Salento
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and we get type-II censored data. Besides these two controlled causes, units may drop
out of the experiment randomly due to some uncontrolled causes. For example, consider
that a doctor perform an experiment with n cancer patients but after the death of
first patient, some patient leave the experiment and go for treatment to other doctor/
hospital. Similarly, after the second death a few more leave and so on. Finally the
doctor stops taking observation as soon as the predetermined number of deaths (say
m) are recorded. It may be assumed here that each stage the participating patients
may independently decide to leave the experiment and the probability (p) of leaving
the experiment is same for all the patients. Thus the number of patients who leave
the experiment at a specified stage will follow binomial distribution with probability
of success (p). The experiment is similar to a life test experiment which starts with
n units. At the first failure X1, r1 (random) units are removed from the remaining
(n − 1) surviving units. At second failure X2, r2 unit from remaining n − 2 − r1 units
are removed, and so on, till mth failure is observed; i.e., at mth failure all the remaining
rm = n −m − r1 − r2 · · · rm−1 units are removed. It may be re-emphasized that, here,
m is pre-fixed constant and r,is are random. Such a censoring mechanism is termed
as progressive type-II censoring with random removal scheme. As stated above, if we
assume that probability of removal of a unit, at every stage, is p for each unit then ri
can be considered to follow a Binomial distribution; i.e, ri ≈ B(n−m−

∑i−1
l=0 rl, p) for

i = 1, 2, 3, · · ·m− 1 with r0 = 0. For further details, reader are referred to Balakrishnan
(2007). In last few years, the estimation of parameters of different life time distribution
based on progressive censored samples have been studied by several authors such as
Childs and Balakrishnan (2000), Balakrishnan and Kannan (2001), Mousa and Jaheen
(2002), Chan and Balakrishnan (2002), Sarhan and Abuamooh (2008), Ashour and Afify
(2007) and Ashour and Afify (2008). The progressive type-II censoring with binomial
removal has been considered by Tse, Yang and Yuen (2000) for Weibull distribution,
Wu and Chang (2002) for Exponential distribution. Under the progressive type-II
censoring with random removals, Wu and Chang (2003) and Yuen and Tse (1996)
developed the estimation problem for the Pareto distribution and Weibull distribution
respectively, when the number of units removed at each failure time has a discrete
uniform distribution, the expected time of this censoring plan is discussed and compared
numerically.
Let us assume that the life time of the units follow the exponentiated Pareto distribution
(EPD) with cumulative distribution function

F (x, α, θ) =
[
1− (1 + x)−α

]θ
; x > 0, α > 0, θ > 0 (1)

This distribution was introduced by Gupta, Gupta and Gupta (1998). The probability
density function (pdf) of X takes the following form with two shape parameters α and
θ:

f(x, α, θ) = αθ
[
1− (1 + x)−α

]θ−1
(1 + x)−(α+1); x > 0, α > 0, θ > 0 (2)

The corresponding survival function is

S(x) = 1− F (x, α, θ) = 1−
[
1− (1 + x)−α

]θ
; x > 0, α > 0, θ > 0 (3)
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It may be noted that for θ = 1, (2) reduces to

f1(x, α, θ) = α(1 + x)−(α+1) ; x > 0, α > 0 (4)

which is standard Pareto distribution of second kind Kotz and Balakrishnan (1994). The
estimators of the parameters of exponentiated Pareto distribution have been obtained
by Shawky, Abu-Zinadah and Hanna (2009) under different estimation procedures for
complete sample case. The estimation of parameters has also been attempted by Afify
(2010) under type-I and type-II censoring scheme. However, no attempt has been made
to develop estimators for the parameters of EPD under progressive type-II censoring with
binomial removals. Therefore, we propose to develop such an estimation procedure. Rest
of the paper is organized as follows:

Section 2 provides the likelihood function. In section 3, maximum likelihood estimator
(MLE) and Bayes estimators have been obtained. An algorithm for simulating the pro-
gressive type-II sample with binomial removal is presented in section 4. For illustration
purpose estimates have been obtained for a simulated data in section 5. The comparison
of MLE’s and corresponding Bayes estimators are given in section 6. Comparisons are
based on simulation studies of risk (average loss over sample space) of the estimators.
Finally conclusions are provided in the last section.

2 Likelihood Function

Let (X1, R1), (X2, R2), (X3, R3), · · · , (Xm, Rm), denote a random progressive type II cen-
sored sample from (2), where X1 < X2 < X3, · · · < Xm. For given number of removals,
say R1 = r1, R2 = r2, R3 = r3, · · · , Rm = rm, the conditional likelihood function can be
written as (see Cohen (1963)):

L(α, θ;x|R = r) = c∗
m∏
i=1

f (xi) [S (xi)]
ri (5)

where c∗ = n(n−r1−1)(n−r1−r2−2)(n−r1−r2−r3−3) · · · (n−r1−r2−r3, · · · , rm−m+1),
and 0 ≤ ri ≤ (n−m− r1 − r2 − r3 · · · ri−1), for i = 1, 2, 3 . . . ,m − 1 and r0 = 0.
Substituting (2) and (3) into (5), we get

L(α, θ;x|R = r) = c∗
m∏
i=1

αθ
[
1− (1 + xi)

−α]θ−1
{
1−

[
1− (1 + xi)

−α]θ}ri (1 + xi)
−(α+1) (6)

We assume that units removed from the test at ith failure, i = 1, 2, · · · ,m − 1, are
independent of each other. However, probability of removal of unit remains same (say,
p) for all units at all failures; i.e., Ri (the number of units removed at the ith failure
i = 1, 2, 3, · · · ,m − 1) follows binomial distribution with parameters n − m −

∑i−1
l=0 rl

and p. Therefore,

P (R1 = r1) =

(
n−m
r1

)
pr1(1− p)n−m−r1 , (7)
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and for i = 2, 3, · · · ,m− 1,

P (Ri = ri|Ri−1 = ri−1, · · ·R1 = r1) =

(
n−m−

∑i−1
l=0 rl

ri

)
pri(1− p)n−m−

∑i−1
l=0 rl (8)

We further assume that Ri is independent of Xi for all i. Hence the likelihood function
takes the following form

L (α, θ, p;x) = L (α, θ;x|R = r)P (R = r) , (9)

where

P (R = r) = P (R1 = r1)P (R2 = r2|R1 = r1)P (R3 = r3|R2 = r2, R1 = r1)

· · ·P (Rm−1 = rm−1|Rm−2 = rm−2, · · ·R1 = r1) .
(10)

Substituting (7) and (8) into (10), we get

P (R = r) =
(n−m)!p

∑m−1
i=1 ri (1− p)(m−1)(n−m)−

∑m−1
i=1 (m−i)ri(

n−m−
∑i−1

l=1 ri

)
!
∏m−1
i=1 ri!

(11)

Using (6),(9) and (11), we can write the likelihood function in the following form :

L (α, θ, p;x) = AL1 (α, θ)L2 (p) , (12)

where
A = c∗(n−m)!

(n−m−
∑i−1
l=1 ri)!

∏m−1
i=1 ri!

,

L1(α; θ) =
m∏
i=1

αθ
[
1− (1 + xi)

−α]θ−1 {1−
[
1− (1 + xi)

−α]θ}ri (1 + xi)
−(α+1) (13)

and

L2 (p) = p
∑m−1
i=1 ri (1− p)(m−1)(n−m)−

∑m−1
i=1 (m−i)ri . (14)

3 Classical and Bayesian Estimation of Parameters

3.1 Maximum Likelihood Estimation

In this section, we have obtained the MLE of the parameters θ, α and p based on
progressive type-II censored data with binomial removals. We observe from (12), (13)
and (14) that likelihood function is multiplication of three terms, namely, A, L1 and L2.
Out of these, A does not dependent on the parameters α, θ and p; thus, it behaves as
constant for maximum likelihood estimation. L1 does not involved p and can be treated
as function of α and θ only, where as L2 involves p only. Therefore, the MLE’s of α and
θ can be derived by maximizing L1 with respect to α and θ. Similarly, the MLE of p
can be obtained by maximizing L2.



134 Singh et al.

Taking log of both sides of (13), we have

lnL1(α; θ) = m ln (θ) +m ln (α)

+ (θ − 1)

m∑
i=1

ln
[
1− (1 + xi)

−α]
+

m∑
i=1

ri ln
[
1−

[
1− (1 + xi)

−α]θ]
− (α+ 1)

m∑
i=1

ln (1 + xi)

(15)

Thus, the normal equations can be obtained by differentiating (15) with respect to α
and θ and equating these to zero; i.e., MLE’s α̂ and θ̂ of α and θ respectively, can be
obtained by simultaneously solving the following normal equations:

m

α
+ (θ − 1)

m∑
i=1

(1 + xi)
−α ln (1 + xi)

1− (1 + xi)
−α −

m∑
i=1

ln (1 + xi)−

θ
m∑
i=1

ri
[
1− (1 + xi)

−α]θ−1 (1 + xi)
−α ln (1 + xi)

1−
[
1− (1 + xi)

−α]θ = 0

(16)

and

m

θ
+

m∑
i=1

ln
[
1− (1 + xi)

−α]
m∑
i=1

ri
[
1− (1 + xi)

−α]θ ln
[
1− (1 + xi)

−α]
1−

[
1− (1 + xi)

−α]θ = 0

(17)

It may be noted that (16) and (17) can not be solved simultaneously to provide a nice
closed form for the estimators. Therefore, we propose to use fixed point iteration method
for solving these equations numerically. For details about the proposed method readers
may refer Jain, Iyengar and Jain (1984). When procedure for obtaining the iteration
function and the choice of initial guesses, based on maximum absolute row sum norms,
have been discussed.

The log of L2 (p) takes the following form

lnL2 (p) = ln p

m−1∑
i=1

ri + ln (1− p)

[
(m− 1) (n−m)−

m−1∑
i=1

ri (m− i)

]
. (18)

The first order derivative of lnL2(p) with respect to p is

∂ lnL2 (p)

∂p
=

∑m−1
i=1 ri
p

−
(m− 1) (n−m)−

∑m−1
i=1 ri (m− i)

1− p
. (19)



Electronic Journal of Applied Statistical Analysis 135

Setting ∂ lnL2(p)
∂p = 0, we get the normal equation for p. Solving this equation for p, we

get the MLE of p as

p̂M =

∑m−1
i=1 ri

(m− 1) (n−m)−
∑m−1

i=1 ri (m− i− 1)
. (20)

3.2 Bayes procedure

In this section, we have obtained the Bayes estimators of the parameters α, θ and p based
on progressively type-II censored data with Binomial removals. In order to obtain the
Bayes estimator, we must assume that the parameters α, θ and p are random variables.
We further assume that these are independently distributed. The random variables α
and θ have non-informative prior distribution with respective prior pdfs

g1 (α) =
1

c
; 0 < α < c (21)

and

g2 (θ) =
1

θ
; θ > 0 (22)

where as p has Beta distribution of first kind with known parameters a, b. The prior pdf
of p is given by

g3 (p) =
1

B (a, b)
pa−1 (1− p)b−1 ; 0 < p < 1, a > 0, b > 0 (23)

Based on the assumptions stated above, the joint prior pdf of α, θ and p is

g (α, θ, p) = g1 (α) g2 (θ) g3 (p) ; 0 < α < c, θ > 0, 0 < p < 1 (24)

Combining the priors given by (21), (22) and (23) with likelihood given by (12), we can
easily obtain joint posterior pdf of (α, θ, p) as
π (α, θ, p|x, r) = J1

J0
where
J1 = αmθm−1

∏m
i=1

[
1− (1 + xi)

−α]θ−1 {1−
[
1− (1 + xi)

−α]θ}ri
(1 + xi)

−(α+1)p
∑m−1
i=1 ri+a−1 (1− p)(m−1)(n−m)−

∑m−1
i=1 (m−i)ri+b−1

and J0 =
∫ 1
0

∫∞
0

∫ c
0 J1dαdθdp

Hence, the respective marginal posterior pdf’s of α, θ and p are given by

π1 (α|x, r) =

∫ 1

0

∫ ∞
0

J1
J0
dθdp (25)

π2 (θ|x, r) =

∫ 1

0

∫ c

0

J1
J0
dαdp (26)
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and

π3 (p|x, r) =

∫ ∞
0

∫ c

0

J1
J0
dαdθ (27)

Usually the Bayes estimators are obtained under Square Error Loss Function (SELF)

l1(φ, φ̂) =∈1
(
φ− φ̂

)2
; ∈1> 0 (28)

Where φ̂ is the estimate of the parameter φ and the Bayes estimator φ̂S of φ comes out to
be Eφ[φ], where Eφ denotes the posterior expectation. This loss function is a symmetric
loss function and can only be justified, if over estimation and under estimation of equal
magnitude are of equal seriousness. A number of asymmetric loss functions are also
available in statistical literature. Let us consider the General Entropy Loss Function
(GELF), proposed by Calabria and Pulcini (1996), defined as follows :

l2(φ, φ̂) =∈2

( φ̂
φ

)δ
− δ ln

(
φ̂

φ

)
− 1

 ; ∈2> 0 (29)

The constant δ, involved in (29), is its shape parameter. It reflects departure from
symmetry. When δ > 0, it considers over estimation (i.e., positive error) to be more
serious than under estimation (i.e., negative error) and converse for δ < 0. The Bayes
estimator φ̂E of φ under GELF is given by,

φ̂E =
[
Eφ

(
φ−δ

)](− 1
δ )

(30)

provided the posterior expectation exits. It may be noted here that for δ = −1, the Bayes
estimator under loss (28) coincides with the Bayes estimator under SELF l1. Expressions
for the Bayes estimators α̂E , θ̂E and p̂E for α, θ and p respectively under GELF can be
given as

α̂E =

[∫ c

0
α−δπ1 (α|x, r) dα

](− 1
δ )

(31)

θ̂E =

[∫ ∞
0

θ−δπ1 (θ|x, r) dθ
](− 1

δ )
(32)

and

p̂E =

[∫ 1

0
p−δπ3 (p|x, r) dp

](− 1
δ )

(33)

Substituting the posterior pdfs from (25), (26) and (27) in (31), (32) and (33) respectively

and then simplifying, we get the Bayes Estimators α̂E , θ̂E and p̂E of α, θ and p as follows
:

α̂E =

∫∞0 θm−1
∫ c
0
αm−δ

∏m
i=1

[
1− (1 + xi)

−α]θ−1
{
1−

[
1− (1 + xi)

−α]θ}ri (1 + xi)
−(α+1)dαdθ∫∞

0
θm−1

∫ c
0
αm
∏m
i=1

[
1− (1 + xi)

−α]θ−1
{
1−

[
1− (1 + xi)

−α]θ}ri (1 + xi)
−(α+1)dαdθ

−1/δ

,

(34)
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θ̂E =

∫∞0 θm−δ−1
∫ c
0
αm
∏m
i=1

[
1− (1 + xi)

−α]θ−1
{
1−

[
1− (1 + xi)

−α]θ}ri (1 + xi)
−(α+1)dαdθ∫∞

0
θm−1

∫ c
0
αm
∏m
i=1

[
1− (1 + xi)

−α]θ−1
{
1−

[
1− (1 + xi)

−α]θ}ri (1 + xi)
−(α+1)dαdθ

−1/δ

,

(35)

and

p̂E =

[
B(
∑m−1

i=1 ri + a− δ, (m− 1)(n−m)−
∑m−1

i=1 (m− i)ri + b)

B(
∑m−1

i=1 ri + a, (m− 1)(n−m)−
∑m−1

i=1 (m− i)ri + b)

]−1/δ
. (36)

It may be noted that the integrals involved in the expressions for the Bayes estimators α̂E
and θ̂E are not reducible in nice closed form. Therefore, we propose the use of numerical
integration method for obtaining the estimates. We have used Gauss-quadrature formula
for evaluating the inner integral which has finite range and for evaluating the outer
integral having range (0,∞), we used Gauss-Laguerre formula. The evaluations were
done by developing program in R-language.

4 Algorithm to Simulate Progressive Type-II Censored
Sample With Binomial Removal

For the study of behavior of the estimators obtained in previous sections, we need to
simulate progressive type-II censored samples with Binomial removals from specified
EPD. To get such a sample, we propose the use of following algorithm :

I. Specify the value of n.

II. Specify the value of m.

III. Specify the value of parameters α, θ and p.

IV. Generate a random sample (Sr) of size n from EP (α, θ).

V. Generate random number ri from B
(
n−m−

∑i−1
l=0 rl, p

)
, at ith stage for i =

1, 2, 3, · · · ,m− 1. (r0 = 0)

VI. Get ordered sample So from Sr to choose the minimum which will be first obser-
vation in desired progressive type-II censored sample Sp.

VII. Drop the observation selected at VI from Sr to have a random sample Sr
∗ of size

n∗ (less 1 than that of Sr).

VIII. Generate ri integers (at ith stage) between 1 to n∗ and observations corresponding
to these numbers are dropped from Sr

∗ to have a random sample Sr
∗∗ of size

n∗∗ = n∗ − ri and re-designate the random sample in hand as new random sample
Sr.
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IX. Repeat steps V to VIII (m− 1) times.

X. Set rm according to the following relation.

rm =

{
n−m−

∑m−1
l=1 rl if n−m−

∑m−1
l=1 rl > 0

0 otherwise
and discard all the remaining rm observations.

5 A Numerical Illustration

For illustration of the proposed estimation procedures given in sections 2 and 3, we
have considered below a simulated progressive type-II censored sample with Binomial
removals from exponentiated Pareto distribution with p = .3, m = 14, α = 2, and θ = .5,
using the above algorithm. The sample thus obtained is given below :

(0.002041782,2), (0.062274706,1), (0.12238516,0), (0.155058203,0), (0.264017913,0), (0.276648679,0),

(0.388598753,1), (0.413575829,1), (0.482304597,0), (0.912576221,0), (1.103519893,0), (1.331501842,1),

(1.37502576,0), (1.385353469,0).

Substituting value of (xi, ri) i = 1, · · · , 14 in (16) and (17), we obtain the normal
equations which are solved simultaneously using fixed point iteration procedure to get
the MLE’s of α and θ. The MLE of p is obtained from (20). The Bayes Estimates
are obtained from (36), using the procedure explained in section 3. The results are
summarized in table 1. It may be noted from the table that for the sample in hand,
all the estimates are larger than the corresponding true values. However the Bayes
estimates α̂E , θ̂E and p̂E with δ = 1.5 is nearer to the true value as compared to other
estimates. For δ = −1.5, the Bayes estimate α̂S , p̂S and MLE θ̂M are nearer to the true
as compared to other estimates. But on the basis of this particular sample, it will be
illogical to conclude that under GELF, we should use α̂E , θ̂E and p̂E if over estimation
is more serious than under estimation for their long run use. Therefore, we study the
behavior of risks of the estimators in the next section.

Table 1: MLE and Bayes estimate of α, θ and p under progressive type-II censored data
with random removal.

δ α θ p

α̂M α̂S α̂E θ̂M θ̂S θ̂E p̂M p̂S p̂E

1.5 2.3947 2.5492 2.2547 1.0681 1.092 1.0019 0.5455 0.4211 0.3799

-1.5 2.3947 2.3492 2.6038 1.0681 1.092 1.1144 0.5455 0.4211 0.4283



Electronic Journal of Applied Statistical Analysis 139

6 Simulation Studies

The estimators α̂M , θ̂Mand p̂M denote the MLE’s of the parameters α, θ and p respec-
tively while α̂S , θ̂S and p̂S are corresponding Bayes estimators under SELF and α̂E , θ̂E
and p̂E are the corresponding Bayes estimators under GELF. We compare the estima-
tors obtained under GELF with corresponding MLE’s and Bayes estimators under SELF.
The comparisons are based on the simulated risks (average loss over sample space) under
GELF.

It may be mentioned here that the exact expressions for the risks can not be obtained
because estimators are not in nice closed form. Therefore, the risks of the estimators
are estimated on the basis of Monte-carlo simulation study of 1000 samples. It may be
noted that the risks of the estimators will depend on values of n,m, θ, α, p, c, δ, a and
b. In order to consider variation in the values of these, we have obtained the simulated
risks for n = 20 [10] 40, m = 12 [2] 18 ,c = 4 [1] 8, a = 2 [2] 8, b = 4 [2] 10, θ = 0.5 [0.5] 2,
α = 0.5 [0.5] 2.5, δ = ±1.5 and p = 0.3 [0.1] 0.6.
Generating the progressive sample as mentioned in section 4, the simulated risks under
GELF have been obtained for selected values of n,m, θ, α, p, b, a, δ and c. The results
are summarized in (tables (2− 15)).

6.1 Discussion of the results

It is interesting to note that as n increases, keeping the effective sample size m fixed,
the risks of all the estimators increase, in general, except for α̂M and p̂M (see tables 2
and 8). On other hand, if the effective sample size m increases for given sample size
n, the risks of the estimators of α and θ decrease as m increases, in general, except for
the estimators α̂M and α̂S (when δ = 1.5). We have noticed that the risks of all the
estimators of p increase, often, as m increases (see tables 3 and 9). Due to the increase
in the value of θ, the risks of the estimators of α and θ, in general, first decrease then
increase. But the risks of the estimators of p do not follow a trend (see table 4 and
10). Further, for the variation in the value of parameter α (when δ = 1.5), we observe
that risks of all estimators of α decrease as α increases but risk of estimators of θ and
p do not follow a definite trend (see table 5). On the other hand, for δ = −1.5, risks of
the estimator α̂S and α̂E decrease as α increases but for the rest of the estimators no
definite trend is observed (see table 11). The risk of estimators of p (when δ = 1.5) often
decrease as p increases and the risk of estimators α̂M and θ̂M increases as p increases but
no definite trend for the risks of rest of the estimators of α and θ is noted as p increases
(see table 6). For δ = −1.5, risk of estimators of θ and p increases as p increases, but
the risks of estimators of α first decrease then increase when p increases (see table 12).

For the variation of the prior parameter c, when δ = 1.5, we observe that no definite
trend is followed by the risks of the estimators of α, θ and p except for α̂S which increases
as c increases (see table 7). But, for δ = −1.5, the risk of estimators of α increase as c
increases and for rest of estimators no definite trend is observed (see table 13).
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It is worth while to remark here that a variation in the values of hyper parameters a and
b do not effect the risks of the estimators of α and θ. It is further seen that for variation
in hyper parameter a, the risks of estimators of p do not have a definite trend, except
for the risk of p̂S (when δ = 1.5) and p̂E (when δ = −1.5) which increase as a increases
(see table 14). For the variation of parameter b, the risk of estimators of p, except for
p̂M (for δ = 1.5) and p̂S (for δ = −1.5) decrease for increase in the value of b in the
beginning and then increase for further increase in the value of b (see table 15).

It may further be noted from the tables that for δ = 1.5, the risk of θ̂E is smaller than
the risks of θ̂M and θ̂S . However, for δ = −1.5, the risk of θ̂M is smaller than those
of θ̂E and θ̂S . Among the estimator of α, α̂E has smaller risks than those of others for
δ = −1.5, but for δ = 1.5, none of the estimators α̂M , α̂S and α̂E outperforms the other
although there is little variation in the risk. The risk of p̂E when δ = −1.5 whereas p̂S
when δ = 1.5 is smaller than the risks of other estimators of p.

7 Conclusions

It is expected that the estimator obtained under a particular loss function shall in general
perform better than the estimators obtained under other loss functions, but this could
not be established in the present study. We have seen above that risk under GELF for
the estimators α̂E , θ̂E and p̂E is not always less than those of α̂M , θ̂M , p̂M , α̂S , θ̂S ,
p̂S . Although the risks associated with θ̂E is smaller than the risk associated with other
estimators in most of the cases. The risks associated with α̂E and p̂E are smaller than
those of other estimators when δ = −1.5. On other hand if δ = 1.5 risk associated with
α̂M and p̂S are noted to be smaller than other estimators. Therefore, for the use of the
proposed estimators, we may recommend the following:

1. θ̂E may be used as an estimator of θ when over estimation is more serious than
under estimation. On the other hand, if under estimation is more serious than
over estimation, θ̂M may be used.

2. α̂E may be used as an estimator of α when under estimation is more serious than
over estimation. Otherwise, α̂M may be used.

3. p̂E may be used an estimator of p when under estimation is more serious than over
estimation; Otherwise, p̂S may be used.
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Table 14: Risk of Estimators of α, θ and p under GELF for fixed, n = 20, m = 14, α = 2,
θ = 0.5, p = 0.3, c = 5, b = 6, δ = ±1.5.

a δ = 1.5 δ = −1.5

RE (p̂M ) RE (p̂S) RE (p̂E) RE (p̂M ) RE (p̂S) RE (p̂E)

2 1.306358 0.06609435 0.08400493 5.398939 0.06622675 0.06232504

4 1.295787 0.08748874 0.06644892 5.459162 0.06402437 0.06633571

6 1.303061 0.1449965 0.1064253 5.429403 0.09412163 0.09857798

8 1.304805 0.2291079 0.1793196 5.45997 0.1275746 0.1326883

Table 15: Risk of Estimators of α, θ and p under GELF for fixed, n = 20, m = 14, α = 2,
θ = 0.5, p = 0.3, c = 5, a = 2, δ = ±1.5.

b δ = 1.5 δ = −1.5

RE (p̂M ) RE (p̂S) RE (p̂E) RE (p̂M ) RE (p̂S) RE (p̂E)

4 1.308718 0.08872191 0.08782098 5.451559 0.0767966 0.07589028

6 1.307904 0.06696796 0.08681964 5.513005 0.07914773 0.07417736

8 1.313298 0.05896052 0.09528147 5.499888 0.0865787 0.07742965

10 1.309155 0.06726842 0.1204681 5.484824 0.112021 0.09878106
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