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Abstract. The main object of this paper is to verify that, in a two-way contingency 
table, the mean values, of location and dispersion statistics, do not depend 
significantly on the particular score system. More in detail, we compare Yates 
scores, inverse distributions based scores, Nair scores, binary ensemble mid-rank 
and Apache II scores. We perform our analysis by using a Monte Carlo 
procedure. 
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1. Introduction 
 
Correspondence analysis, in most general meaning, is a fundamental tool in order to graphically 
identify the nature of the association between categorical variables of a contingency table. In 
particular, as one of the categorization is ordered, it is possible to perform a more detailed 
analysis than usual chi-squared statistic, by using this methodology. In fact, usual Pearson's test 
may not be significant.   
In this contest, a fundamental contribution is given by the achievements of Best and Rayner 
(1998). Their procedure involves a partition of chi-squared statistic in terms which represent 
location and dispersion effects for the whole contingency table. By using this approach, one can 
perform a partition on the location statistic so defined, in order to evaluate the important factors. 
Moreover, location and dispersion components are the basis for weakly optimal directional tests 
and complementary to Pearson's test (Rayner and Best, 2000). The method appears relatively 
simple if compared to other recent correspondent techniques, both conceptually and numerically. 
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In particular, location and dispersion components, like residual effects, may be expressed by 
using orthogonal Emerson polynomials (Beh et al., 2008). The polynomials' variables are scores 
assigned to every column of a contingency table; alternatively, we may utilize Nair (1986) 
scores, as stated by Best et al. (1998), or Rayner and Best (2000). The problem of selecting the 
scores is still open in contemporary applied statistic literature. In this work we show, by 
performing Monte Carlo simulations, that, in most cases, the choice among typical scores 
systems does not influence the mean values of both location and dispersion statistics. 
 
 
2. Pearson statistics and multinomial components 
 
Consider a r by c contingency table with counts Nij, row marginals Ni• = Ni1 +...+ Nic, column 
marginals N•j = N1j  +...+ Nrj (i ∈ {1, 2,..., r},  j ∈ {1, 2,..., c}) and total counts n = N•1 +...+ N•c 
= N1•+...+ Nr• . Let the (i, j)’th cell of relative frequencies be denoted by pij = Nij,/n; let pi• = Ni•/n 
and p•j = N•j /n be, respectively, the i-th row and j-th column marginal proportion. Finally, 
suppose that scores s(1), s(2),..., s(c) are assigned to classes 1, 2,..., c, respectively. The usual 
Pearson chi-squared statistic is: 
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where Eij = Ni•N•j/n. As stated in Best and Rayner (1998), or Rayner and Best (2000), its 
components may be defined as:	  
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(u ∈  {1, 2,..., c − 1}, i ∈ {1, 2,..., r}), where b1(j), b2(j),..., bc−1(j) (j ∈ {1, 2,..., c}) are Emerson 
(1968) orthogonal polynomials: they can be computed by setting b− 1(j) = 0 and b0(j) = 1 for any j 
∈ {1, 2,..., c}. The other elements can be calculated by using the following formula (Beh et al., 
2008):	  
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This recurrence relation may be used when equally spaced integer valued scores are used to 
describe the ordered structure of the column categories. Moreover, if Dj is the diagonal matrix of 
relative frequencies, with the (j,j) element  p•j, then the column polynomials are orthogonal with 
respect to this matrix. In formulas, we have: 
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The orthogonal Emerson polynomials whose degree is 1 and 2 can be easily obtained by 
applying the recurrence relation (3). So they can be written as: 
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(d ∈ {1, 2, 3}). It can be shown that 
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Therefore, a measure Q of the overall location effect, for the contingency table, is                               
  
Q = V11

2
  +...+ V1r

2.          (5) 
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We observe that, for any i ∈  {1, 2,..., r}, Vir has an asymptotically standard normal distribution 
with the linear constraint: 
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As a consequence, Q is approximately distributes as a χ2

r – 1.   
Now, if c ≥ 3, the dispersion statistic D can be assessed by  
 
D = V21

2
  +...+ V2r

2.          (6) 
 
Usually, it is assumed that, for any j ∈ {1, 2,..., c}, the score sj is equal to j (Yates, 1948). 
Sometimes other values are possible. Alternatively, following Best et al. (1998), or Rayner and 
Best (2000), we can formally define Nair location and dispersion scores by setting, for any j ∈ 	  
 {1, 2,..., c}, b1(j) = lj and b2(j) = dj, in equations (2), (5) and (6), where 
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tj = p•1+ … + p•(j - 1) + p•j /2,         (8) 
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and 
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Finally, we observe that location and dispersion statistics can be regarded as two functions, Q(s) 
and D(s), of scores system s. 
 
 
3. Computer simulations 
 
The aim of our simulation study has been controlling if the mean values, of Q and D, vary as a 
consequence of a change of score system. In particular, we have considered: Yates scores, 
normal distribution based scores and Nair scores; we have named them, respectively, with s1, s2, 
s3 and s4. More in detail, we have defined: 
 
s1(j ) =  j 
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(j ∈ {1, 2,..., c}), where Φ is the cumulative function of normal distribution. The necessity of 
utilizing Monte Carlo method derives from the fact that it appears hard to use sensitivity 
analysis. For simplicity, we have simulated only contingency tables with counts following a 
uniform distribution on [0, 1]. We may observe that, this is not a restrictive hypothesis. In order 
to show this property, consider two r by c contingency tables A and B, whose counts are denoted 
by NAij and NBij = α NAij, respectively (i ∈ {1, 2,..., r}, j ∈ {1, 2,..., c}, α ∈ R). Denote with QX 
and DX, respectively, the location and dispersion statistics of contingency table X (X ∈ {A, B}). 
In this case, we can easily prove the equalities QB = α QA and DB = α DB. This result is valid for 
any kind of scores system. 
Another preliminary observation is that, for any value of r, if c = 3, Q and D are exactly the same 
for any of the first three scores, s1, s2 and s3. In fact, by direct calculations, we have s1(1) = 1, 
s1(2) = 2, s1(3) = 3, s2(1) = – 0.8694, s2(2) = 0, s2(3) =  0.8694, s3(1) = – 0.6745, s3(2) = 0 and 
s3(3) = 0.6745. Therefore, x3 – x2 = x2 – x1 for any of these three scores systems. This means that 
the scores are of the form aj + b (where a and b are real constants and j ∈ {1, 2,..., c}): it follows 
that the coefficients of Emerson polynomials are the same (because they are invariant with 
respect to a linear transformation of the scores), and so the location and dispersion effects.   
Therefore, we have simulated several sets of two-way contingency tables. Each set consists of 
100000 tables having the same number of rows and the same number of columns. Then, for any 
set of contingency tables, we have calculated the mean values and the variances of Q and D over 
the 100000 simulations. So we have verified that the two means, of these statistics, do not 
depend significantly on the choice of the scores. Table 1 shows our results for some value of r 
and c. This study tell us that the expected values, of the effects, decrease with the increase of the 
columns number c. 
Secondly, we have generated 500000 contingency tables in which both counts and dimensions 
are randomly distributed: for any generated table, the raw length is comprised between 2 and 10 
and the column length is comprised between 3 and 10. Therefore, we have calculated the mean 
values and the variances of location and dispersion statistics. Table 2 confirms what stated in 
Table 1. Furthermore, we have repeated the same calculations by utilizing 50000 simulations. 
Table 2 shows that the results are practically identical to those obtained by simulating 500000 
contingency tables. This means that our estimations are reliable. 
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Table 1. Mean values and variances of Q and D, for contingency tables, whose values are uniformly 
distributed in [0, 1], for different score systems. The number simulations is equal to 100000 for each of the 
nine groups. 
	   Scores Mean (Q) Var (Q) Mean (D) Var (D) 
r = 6,  
c = 5 

s1 0.9046 0.2805 0.9198 0.2967 
s2 0.9057 0.2770 0.9205 0.2982 
s3 0.9054 0.2781 0.9203 0.2978 
s4 0.9000 0.2795 0.9113 0.2929 

r = 6,  
c = 6 

s1 0.8948 0.2837 0.9070 0.2939 
s2 0.8960 0.2797 0.9090 0.2942 
s3 0.8956 0.2810 0.9084 0.2941 
s4 0.8901 0.2823 0.8977 0.2904 

r = 6,  
c = 8 

s1 0.8819 0.2879 0.8961 0.2950 
s2 0.8836 0.2840 0.9008 0.2922 
s3 0.8831 0.2851 0.8996 0.2929 
s4 0.8782 0.2866 0.8871 0.2912 

r = 8,  
c = 6 

s1 1.2464 0.3908 1.2612 0.4056 
s2 1.2478 0.3848 1.2639 0.4060 
s3 1.2474 0.3866 1.2631 0.4059 
s4 1.2417 0.3895 1.2507 0.4013 

r = 8,  
c = 8 

s1 1.2272 0.3992 1.2428 0.4012  
s2 1.2293 0.3931 1.2471 0.3958 
s3  1.2287 0.3949 1.2460 0.3971 
s4 1.2232 0.3974 1.2330 0.3965 

r = 8,  
c = 10 

s1 1.2159 0.3965 1.2321 0.3997 
s2 1.2176 0.3910 1.2395 0.3915 
s3  1.2171 0.3926 1.2376 0.3934 
s4 1.2125 0.3953 1.2235 0.3955 

r = 10,  
c = 5 

s1 1.6134 0.4982 1.6311 0.5186 
s2 1.6146 0.4913 1.6325 0.5217 
s3  1.6142 0.4935 1.6321 0.5210 
s4 1.6081 0.4971 1.6209 0.5147 

r = 10,  
c = 8 

s1 1.5762 0.5114 1.5915 0.5156 
s2 1.5786 0.5031 1.5962 0.5084 
s3  1.5779 0.5055 1.5950 0.5102 
s4 1.5721 0.5098 1.5812 0.5108 

r = 10,  
c =10 

s1 1.5652 0.5123 1.5736 0.5108 
s2 1.5666 0.5042 1.5810 0.4985 
s3  1.5662 0.5065 1.5791 0.5015 
s4 1.5617 0.5112 1.5643 0.5068 
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Table 2. Mean values and variances of Q and D, for contingency tables whose values are uniformly 
distributed in [0, 1], when the number of rows and columns are randomly distributed and less or equal to 10.  
Numer of 
simulations 

Scores Mean (Q) Var (Q) Mean (D) Var (D) 

5000 s1 0.8864 0.4774 0.9072 0.5002 
s2 0.8896 0.4734 0.9088 0.5119 
s3 0.8886 0.4745 0.9088 0.5125 
s4 0.8825 0.4756 0.9008 0.4965 

50000 s1 0.8967 0.4920 0.9066 0.4994 
s2 0.8973 0.4867 0.9085 0.4979 
s3 0.8970 0.4883 0.9081 0.4983 
s4 0.8929 0.4903 0.9005 0.4955 

500000 s1 0.8965 0.4882 0.9066 0.5005 
s2 0.8977 0.4847 0.9077 0.4990 
s3 0.8973 0.4859 0.9075 0.4994 
s4 0.8928 0.4865 0.9004 0.4963	  

	  
We may be a comparison among different scores systems also by considering the ratios            
Mean (Q(sh))/Mean (Q(s1)) and Mean D((sh))/Mean (D(s1)) (h ∈ {2, 3, 4}). In order to confirm 
the results stated in Tables 1-2, we must verify that every ratio has a value approximately equal 
to one. Tables 3 shows that the use of ratios is reliable even by performing 5000 simulations. So 
doing, we can extend our analysis to contingency tables whose dimensionality is higher. In this 
way, we have also employed additional scores systems: inverse Weibull PDF based scores, 
binary ensemble mid-rank and Apache II (Knaus et al., 1985) scores. We have indicated them, 
respectively, with s5, s6, and s7. More in detail, we define these scores as: 
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where F(*; λ, µ) is the Weibull distribution whose shape and scale parameters are, respectively, λ 
> 0 and µ > 0; 
s6(j) are mid-rank scores of the r by c contingency table whose counts Iij(x) are so defined 
(Hamill and Juras, 2006):   	  
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(j ∈ {1, 2, …, c}). Table 4(a and b) and table 5(a and b) confirm that mean values, of location 
and dispersion statistics, do not depend on score system.	  
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Table 3. Ratios Mean (Q(sh))/Mean (Q(s1)) and Mean (D(sh))/Mean (D(s1)) (h ∈  {2, 3, 4}), for contingency 
tables whose values are uniformly distributed in [0, 1], when the number of rows and columns are randomly 
distributed and less or equal to 10. 
Numer of 
simulations 

Scores Mean (Q(sh))/Mean (Q(s1)) Mean (D(sh))/Mean (D(s1)) 

5000 s2 1,0036 1,0018 
s3 1,0025 1,0018 
s4 0,9956 0,9929 

50000 s2 1,0007 1,0021 
s3 1,0003 1,0017 
s4 0,9958 0,9933 

500000 s2 1,0013 1,0012 
s3 1,0009 1,0010 
s4 0,9959 0,9932	  

 
 
4. Application 
 
To illustrate our results, we analyze a 6 by 6 table (Table 6) from Best and Rayner (1998). The 
six row of this table are a result of a 2 by 3 cross-classification of  urbanization and region, while 
the column variable describes the response: it is measured on a categorical scale. Finally, Table 7 
illustrates location and dispersion statistics of this data set. We observe that, except for the 
Apache II scores, the values of location and dispersion statistics have the same order of 
magnitude. This probably occurs because Apache II scores, unlike all others, if regarded as a 
function of the variable j, are not increasing. 	  
 
Table 4a. Ratios Mean (Q(sh))/Mean (Q(s1)) and Mean D(sh)/Mean (D(s1)) (h ∈  {2, 3, 4, 5, 6, 7}), for 
contingency tables whose values are uniformly distributed in [0, 1]. The number simulations is equal to 5000 
for each of the three groups.  
Table 
dimensionality 

Scores Mean (Q(sh))/Mean (Q(s1)) Mean (D(sh))/Mean (D(s1)) 

r =10 
c = 20 

s2 0.9987 1.0046 
s3 0.9984 1.0030 
s4 0.9985 0.9969 
s5  λ = µ = 5 0.9990 1.0027 
s6   x = 0.5 0.9980 0.9955 
s6   x = 0.2 0.9984 0.9955 
s7    1.0064 1.0006 
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Table 4b. Ratios Mean (Q(sh))/Mean (Q(s1)) and Mean D(sh)/Mean (D(s1)) (h ∈  {2, 3, 4, 5, 6, 7}), for 
contingency tables whose values are uniformly distributed in [0, 1]. The number simulations is equal to 5000 
for each of the three groups. 
Table 
dimensionality 

Scores Mean (Q(sh))/Mean (Q(s1)) Mean (D(sh))/Mean (D(s1)) 

r = 20 
c = 10 

s2 0.9993 1.0029 
s3 0.9991 1.0022 
s4 0.9991 0.9963 
s5  λ = µ = 5 1.0001 1.0003 
s6   x = 0.5 0.9986 0.9965 
s6   x = 0.2 0.9983 0.9958 
s7    0.9970 1.0097 

r = 20 
c = 20 

s2 1.0038 0.9959 
s3 1.0031 0.9962 
s4 0.9992 0.9988 
s5  λ = µ = 5 1.0014 1.0041 
s6   x = 0.5 0.9991 0.9976 
s6   x = 0.2 0.9992 0.9975 
s7    0.9968 0.9863	  

 
 
5. Conclusion 
 
This work has focused on testing the components of Pearson chi-squared statistic for two 
dimensional contingency tables. We have shown that, for a few common scores systems used, 
the mean values, of location and dispersion statistics, do not depend on scores used. Our 
simulation study tells us that this property remains true as table dimensionality increases. Our 
study enhances the importance of location and dispersion effects. Our method could be used in 
order to test a scores system utilized: we suggest to reject a particular scores system if the 
empirical means, of Q and D, do not coincide with those relative to common scores utilized in 
statistical literature.	  
 
Table 5a. Ratios Mean (Q(sh))/Mean (Q(s1)) and Mean (D(sh))/Mean (D(s1)) (h ∈  {2, 3, 4, 5, 6, 7}), for 
contingency tables whose values are uniformly distributed in [0, 1]. The number of rows and columns are 
randomly distributed in a given interval. The number simulations is equal to 5000 for each of the three 
groups. 
Table 
dimensionality 

Scores Mean (Q(sh))/Mean (Q(s1)) Mean (D(sh))/Mean (D(s1)) 

2 ≤ r ≤ 20 
3 ≤ c ≤ 20 

s2 1.0024 1.0018 
s3 1.0019 1.0013 
s4 0.9983 0.9956 
s5  λ = µ = 5 0.9992 1.0000 
s6   x = 0.5 0.9974 0.9955 
s6   x = 0.2 0.9971 0.9939 
s7    1.0023 0.9983 
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Table 5b. Ratios Mean (Q(sh))/Mean (Q(s1)) and Mean (D(sh))/Mean (D(s1)) (h ∈  {2, 3, 4, 5, 6, 7}), for 
contingency tables whose values are uniformly distributed in [0, 1]. The number of rows and columns are 
randomly distributed in a given interval. The number simulations is equal to 5000 for each of the three 
groups. 
Table 
dimensionality 

Scores Mean (Q(sh))/Mean (Q(s1)) Mean (D(sh))/Mean (D(s1)) 

2 ≤ r ≤ 40 
3 ≤ c ≤ 40 

s2 1.0021 1.0044 
s3 1.0017 1.0039 
s4 0.9993 0.9988 
s5  λ = µ = 5 1.0019 1.0006 
s6   x = 0.5 0.9989 0.9981 
s6   x = 0.2 0.9992 0.9979 
s7    1.0027 0.9914 

2 ≤ r ≤ 80 
3 ≤ c ≤ 80 

s2 1.0022 0.9950 
s3 1.0019 0.9952 
s4 0.9998 0.9994 
s5  λ = µ = 5 1.0018 1.0002 
s6   x = 0.5 0.9996 0.9993 
s6   x = 0.2 0.9997 0.9992 
s7    0.9983 0.9988	  

 
Table 6. Observed counts in various regions for the olive data. 
Urbanization 
 

Region 
 

Response 

   – – ϕ + ++ +++ 

Urban  Mid-west 20 15 12 17 16 28 

North-east  18 17 18 18 6 25 

South-west 12 9 23 21 19 30 

Rural Mid-west 30 22 21 17 8 12 

North-east 23 18 20 18 10 15 

South-west 11 9 26 19 17 24 
 
Table 7. Location and dispersion statistics, calculated for various scoring systems, for the olive data. 
Scores Q D 
s1 33.6130 5.7814 

s2 32.6576 5.3081 

s3 32.9786 5.4416 

s4 33.5465 5.8249 

s5  33.0732 4.8911 

s6   x = 10 33.5093 5.8200 

s6   x = 20 33.3623 5.8382 

s7    5.9934 1.4710	  
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