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Abstract: In this paper, Bayes estimators of Rayleigh parameter and its 
associated risk based on extended Jeffrey’s prior under the assumptions of both 
symmetric loss function (squared error loss) and asymmetric (precautionary and 
general entropy) loss function have been derived. We also derive the highest 
posterior density (HPD) and equal-tail prediction intervals for the parameter as 
well as the HPD prediction intervals for future observation. Monte Carlo 
simulations are performed to compare the performances of the Bayes estimates 
under different situations. Finally, an illustrative example is presented to assess 
how the Rayleigh distribution fits a real data set. 
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1. Introduction 
 
The Rayleigh distribution was originally introduced by Lord Rayleigh [24] in the field of 
acoustics. Since then, many researchers have used this distribution in different field of science 
and technology. The Rayleigh distribution is frequently used to model wave heights in 
oceanography, and in communication engineering. Also, it has a wide application in lifetime data 
analysis especially in reliability theory and survival analysis. An important characteristic of the 
Rayleigh distribution is that its hazard rate is a linearly increasing function of time at constant 
rate which makes it a suitable model for the lifetime of components/items that age rapidly with 
time. Thus, as time increases, the reliability function of Rayleigh distribution decreases at a 
much higher rate than the exponential reliability function does.  
_________________________ 
* Corresponding Author: E-mail: sanku_dey2k2003@yahoo.co.in 
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 In this paper we consider one parameter Rayleigh distribution with the following probability  
density function (pdf): 
 

      (1) 
 
and corresponding cumulative distribution function: 
 

      (2) 
 
where  is the scale parameter of the distribution. A great deal of research has been done on 
estimating the parameter of Rayleigh distribution using both classical and Bayesian techniques, 
and a very good summary of this work can be found in Sinha and Howlader [26], Ariyawansa 
and Templeton [5], Howlader [18], Howlader and Hossian [19], Lalitha and Mishra [20], Abd 
Elfattah et al. [1], Hendi et. al [17], Dey and Das [13] and Dey [12]. Statistical prediction was the 
earliest and most prevalent form of statistical inference. Prediction has its uses in variety of 
disciplines such as medicine, engineering and business. For more details on the history of 
statistical prediction analysis and examples, see Aitchison [2], Dunsmore [14], Aitchison and 
Dunsmore [3], Bain [6], Chhikara and Guttman [9], Geisser [15]. In this paper we consider the 
estimation of the posterior predictive density of a future observation based on the current data 
and construct predictive intervals of a future observation.  
The rest of the paper is organized as follows. In section 2, we discuss prior and loss functions 
used in our Bayesian estimation. In section 3, we obtain the Bayes’ estimators of  and risk 
functions under symmetric and asymmetric loss functions. In section 4, Classical and Bayesian 
prediction intervals are obtained. In Section 5, we obtain the HPD interval for the Rayleigh 
parameter. Bayes predictive estimator and HPD prediction interval for a future observation are 
derived in Section 6. A simulation study is performed in Section 7. A real life data set is 
provided in Section 8 for the evaluation of Bayes estimates, classical and Bayesian prediction 
intervals and HPD prediction intervals for future observation and finally we conclude the paper 
in Section 9. 
 
 
2. Prior and Loss functions 
 
An important requisite in Bayesian estimation is the appropriate choice of prior(s) for the 
parameters. However, Bayesian analysts have pointed out that there is no clear cut way from 
which one can conclude that one prior is better than the other. Very often, priors are chosen 
according to ones subjective knowledge and beliefs. However, if one has adequate information 
about the parameter(s) one should use informative prior(s), otherwise it is preferable to use non-
informative prior(s). In this paper we consider the extended Jeffrey’s prior proposed by Al-
Kutubi [4] as:  
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where  is the Fisher’s information matrix. For the model (1),  
and hence: 
 

          (3) 
 
where  is a constant. With the above prior, we use three different loss functions for the model 
(1): first is the squared error loss function which is symmetric, second is the precautionary loss 
which is a simple asymmetric function and third one is the general entropy loss function which is 
asymmetric in general and to some extent complex in nature.  
It is well known that choice of loss function is an integral part of Bayesian inference. As there is 
no specific analytical procedure that allows us to identify the appropriate loss function to be 
used, most of the works on point estimation and point prediction assume the underlying loss 
function to be squared error which is symmetric in nature. However, in-discriminate use of SELF 
is not appropriate particularly in these cases, where the losses are not symmetric. Thus in order to 
make the statistical inferences more practical and applicable, we often needs to choose an 
asymmetric loss function. A number of asymmetric loss functions have been shown to be 
functional, see Varian [28], Zellner [29]. Moorhead and Wu [22], Spiring and Yeung [27], 
Chandra [8], etc. In the present work, we consider symmetric as well as asymmetric loss 
functions for better comprehension of Bayesian analysis. 
 

a) The first is the common squared error loss function given by: 
 

         (4) 
 

which is symmetric, and  and  represent the true and estimated values of the parameter. 
This loss function is frequently used because of its analytical tractability in Bayesian 
analysis. 

 
b) The second is the precautionary loss function given by: 

 

         (5) 
 

which is an asymmetric loss function, for details, see Norstrom [23]. This loss function is 
interesting in the sense that a slight modification of squared error loss introduces asymmetry.  

 
c) The last loss function is the general entropy loss function which was proposed by 

Calabria and Pulcini [7] which is of the form  
 

    (6) 
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whose minimum occurs at . Without loss of generality, we assume . This loss is a 
generalization of the entropy loss used by several authors [see, for example, Dey et al.[10] 
and Dey and Liu [11]], where the value of the shape parameter  was taken as . If we 

replace  in place of ˆ
ln( )σ
σ

i.e. , we get the linear exponential (LINEX) loss 

function,  which is proposed by Zellner [29]. 
 
 
3. Bayes Estimation of σ 
 
Consider a group of  components put on test, their lifetimes  are assumed to 
follow a Rayleigh distribution given in (1). The likelihood function of  based on  is given by: 
 

    (7) 
 
where . The conditional probability density function of  given the data 

 is given by: 
 

    (8) 
 
Note that  follows an inverted gamma distribution, denoted as InGa( ), which has the 
following form of the pdf:  
 

 
 

In our set up  and
2

2
s

β = . By using squared error loss function (4), the risk 

function is: 
 

 

     (9) 
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Bayes’ estimator  (subscript s stands for estimator under squared error loss function) is the 
solution of the equation,  which implies, 
 

         (10) 
 
If , we get, the Jeffrey’s prior and the corresponding Bayes estimator is: 
 

 
 
If , we get, the Hartigan prior [Hartigan [16]] and the corresponding Bayes estimator 
becomes: 
 

 
 
The Bayes estimator under a precautionary loss function (5) is denoted by , and is given by the 
following equation: 
 

 
 
and the corresponding Bayes estimator comes out to be: 
 

         (11) 
 
The risk function under precautionary loss function is given by: 
 

    (12) 
 
The Bayes estimator under a general entropy loss function (6) is denoted by , and is given by 
the following equation: 
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and the corresponding Bayes estimator comes out to be: 
 

        (13) 
 
The risk function under general entropy loss function is given by: 
 

  (14) 
 
where  is the digamma function. 
 
 
4. Highest Posterior Density Intervals for σ 
 
In this section our objective is to provide a highest posterior density (HPD) interval for the 
unknown parameter  of the model (1). Since the posterior density (8) is unimodal, the 

 HPD interval  for  must satisfy: 
 

         (15) 
 
and  
 

          (16) 
 
simultaneously. After some algebra, the equations (15) and (16) take the following form:  
 

 

    (17) 
and 
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         (18) 
 
The HPD interval  is the simultaneous solution of (17) and (18). 
 
 
5. Predictive Distribution 
 
In this section our objective is to obtain the posterior predictive density of future observation, 
based on current observations. We also aim to attain equal-tail Bayesian prediction interval for 
the future observation and then compare this interval with frequentist predictive interval. The 
posterior predictive distribution for  given  under (8) is defined by: 
 

 

       (19) 
 
A  equal- tail prediction interval  is the solution of: 
 

 
 
Using (19), we get (after simplification): 
 

       (20) 
and 
 

         (21) 
 
Therefore,  
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where  refers to the length of predictive interval with respect to the extended Jeffrey’s prior.  

For deriving classical intervals, we follow the approach of Sinha [25]. Since, the ratio  is 

distributed as a beta-variate of the second kind with parameters  and , the pdf of  has the 
form:  
 

 
 
Solving for  in  
 

 
 
we have the length of classical interval (CI) for  [ see Dey and Das [13]]  
 

 
 
It is to be noted that if we take  in (20) and (21), we get classical  equal- 
tail prediction interval and hence get the length of that interval as . 
 
 
6. Bayes Predictive Estimator and HPD Prediction Interval for a Future 
Observation 
 
The Bayes predictive estimator of  under a squared error loss function is: 
 

 

         (22) 
 
The Bayes predictive estimator of  under the precautionary loss function (5) is given by  
 

         (23) 
 



Bayesian estimation of the paramater of rayleigh distribution under the extended Jeffrey’s prior 

52 

The Bayes predictive estimator of  under the general entropy loss function (6) is given by: 
 

1
* [ ]3

py Jg

−
=  

     (24) 
where: 
 

Jg = y− p
0

∞

∫ ξ (y | t )dy  

 
For the unimodal predictive density (19), the HPD-predictive interval  with probability 

 for  is the simultaneous solution of the following:  
 

 
 

      (25) 
 
and  
 

 
 

         (26) 
 
 
7. Simulation Study and Discussion 
 
In this section, we conduct a simulation experiment in order to assess the performances of Bayes 
estimators of  using the prior (2) under three different loss functions. The behavior of the loss 
functions is evaluated on the basis of risk estimates. The results of the simulation study are 
summarized in the Tables 1-3. We simulate samples from (1) with the true value of , using 
four different sample sizes ( ). All results are based on  repetitions. In 
the Tables, the estimators for the parameter and the risk, is averaged over the total number of 
repetitions. Monte Carlo standard deviation of each estimate is presented within parenthesis. 
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Table 1. Bayes estimate ( ) and the corresponding risk estimate [ ] of the parameter 

 under squared error loss. 
      

          
 1.027 0.030 1.012 0.014 1.009 0.009 1.002 0.003  
 1.001 0.027 1.001 0.013 1.000 0.009 0.999 0.003  
 0.974 0.025 0.988 0.012 0.991 0.008 0.997 0.002  
 0.949 0.022 0.975 0.012 0.985 0.008 0.995 0.002  
 0.846 0.014 0.914 0.009 0.940 0.007 0.980 0.002  

 
Table 2. Bayes estimate ( ) and the corresponding risk estimate [ ] of the 
parameter  under precautionary loss.  

      
          
 1.040 0.029 1.020 0.013 1.012 0.009 1.003 0.003  
 1.015 0.027 1.007 0.013 1.004 0.008 1.001 0.003  
 0.987 0.025 0.994 0.012 0.995 0.008 0.999 0.003  
 0.965 0.023 0.982 0.012 0.988 0.008 0.996 0.002  
 0.851 0.016 0.914 0.010 0.943 0.007 0.981 0.002  

 
Table 3. Bayes estimate ( ) and the corresponding risk estimate [ ] of the 
parameter  under general loss.  

      
           

0.5 
0.5 1.004 0.003 1.004 0.002 1.002 0.001 1.001 0.001  
1.0 1.000 0.013 1.001 0.006 1.000 0.004 1.000 0.001  
1.5 0.998 0.029 0.996 0.014 0.999 0.009 0.998 0.003  

1.0 
0.5 0.982 0.003 0.989 0.002 0.992 0.001 0.998 0.001  
1.0 0.976 0.012 0.987 0.006 0.992 0.004 0.998 0.001  
1.5 0.969 0.027 0.984 0.014 0.990 0.009 0.997 0.002  

1.5 
0.5 0.961 0.003 0.977 0.001 0.985 0.001 0.995 0.001  
1.0 0.955 0.012 0.976 0.006 0.984 0.004 0.996 0.001  
1.5 0.948 0.026 0.971 0.014 0.981 0.009 0.994 0.003  

2.0 
0.5 0.936 0.003 0.966 0.001 0.976 0.001 0.993 0.001  
1.0 0.928 0.011 0.964 0.006 0.974 0.004 0.993 0.001  
1.5 0.928 0.025 0.963 0.013 0.975 0.009 0.992 0.003  

5.0 
0.5 0.831 0.002 0.906 0.001 0.934 0.001 0.979 0.001  
1.0 0.827 0.009 0.902 0.005 0.931 0.004 0.978 0.001  
1.5 0.824 0.020 0.899 0.012 0.930 0.008 0.977 0.003  

 
Tables 1-3 show that Bayes estimator under the choice of  (Jeffrey’s prior) provides 
little overestimation of the true parameter value in small sample situation, whereas under the 
choice of  (Hartigan’s prior), it underestimates even if sample size is quite large. When 
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 takes large value, it has a tendency of underestimation in small sample setting, but with large 
sample size, we don’t observe much change. We observe a general trend is that for a fixed , the 
estimates and corresponding risks decrease with the increase in . Same is true for fixed  but 
with the increase in . There is not much variation in behavior of choice of loss functions as far 
as parameter estimation is concerned. From Table 3, it is observed that except for small  and , 
it has tendency of underestimation. Here the estimates of the parameter decrease but the 
corresponding risks increase slightly with the increase of . As expected, when sample size 
increases, risk of estimator decreases. However, the rate of decrease in the risk varies with . It 
is also observed that if the sample size is large, the effect of  on the risk of the Bayes estimator 
is negligible.  
 

Table 4. HPD intervals for the parameter  of the Rayleigh distribution. 
       

             

10 
0.01 0.711 1.729 0.698 1.654 0.688 1.594 0.676 1.532 0.622 1.275  
0.05 0.764 1.492 0.752 1.442 0.739 1.392 0.725 1.345 0.666 1.145  
0.10 0.711 1.729 0.698 1.654 0.688 1.594 0.676 1.532 0.622 1.275  

20 
0.01 0.777 1.417 0.769 1.391 0.762 1.369 0.756 1.348 0.717 1.230  
0.05 0.819 1.292 0.811 1.270 0.806 1.255 0.798 1.237 0.757 1.139  
0.10 0.838 1.227 0.832 1.211 0.826 1.197 0.819 1.182 0.778 1.096  

30 
0.01 0.810 1.314 0.804 1.299 0.800 1.287 0.795 1.274 0.767 1.202  
0.05 0.847 1.222 0.842 1.211 0.838 1.201 0.833 1.191 0.801 1.127  
0.10 0.864 1.175 0.860 1.167 0.856 1.158 0.849 1.146 0.821 1.092  

100 
0.01 0.886 1.149 0.884 1.145 0.882 1.142 0.880 1.140 0.870 1.121  
0.05 0.909 1.109 0.908 1.106 0.906 1.103 0.904 1.100 0.893 1.084  
0.10 0.921 1.087 0.918 1.083 0.917 1.082 0.916 1.080 0.905 1.065  

 
In Table 4, the HPD interval estimates for  have been reported. We have analyzed these 
intervals for three different coverage probabilities ( ). As expected, it is 
observed that as the sample size increases, the HPD interval becomes narrower so is the case 
when coverage probability decreases. There is little difference in the behavior of HPD intervals 
when comparing Jeffrey’s prior (when ) over Hartigan’s prior (when ). The 
intervals are more or less same for large samples.  
Table 5 indicates that the Bayes predictive intervals (within parenthesis) are favorable than the 
classical predictive intervals as it offers much shorter intervals than the classical intervals. The 
predictive estimates for future observation and the corresponding HPD intervals have been 
reported in Table 6. Here  and  are derived by using squared error loss, precautionary 
loss and general entropy loss respectively. The difference between  and  are not so 
prominent but  significantly differs from these two. For all predictive estimates consistency 
property is verified with the increase of sample size and with the increase of . HPD intervals 
provide fairly reasonable coverage for all the estimates from shortest length of interval point of 
view. 
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Table 5. Classical (Bayesian) predictive interval  for the future observation from the Rayleigh 
distribution. 

       
             

10 

0.01 0.451 
(0.140) 

16.846 
(5.243) 

0.438 
(0.139) 

16.231 
(5.160) 

0.427 
(0.135) 

15.742 
(4.965) 

0.417 
(0.131) 

15.285 
(4.817) 

0.371 
(0.117) 

13.262 
(4.181) 

0.05 1.011 
(0.318) 

13.408 
(4.221) 

0.985 
(0.311) 

13.003 
(4.119) 

0.961 
(0.300) 

12.639 
(3.949) 

0.943 
(0.301) 

12.359 
(3.948) 

0.838 
(0.267) 

10.788  
(3.436)  

0.10 1.435 
(0.457) 

11.832 
(3.766) 

1.400 
(0.442) 

11.497 
(3.637) 

1.364 
(0.435) 

11.166 
(3.557) 

1.333 
(0.428) 

10.881 
(3.490) 

1.191 
(0.370) 

9.585  
(2.980)  

20 

0.01 0.632 
(0.141) 

21.969 
(4.920) 

0.626 
(0.141) 

21.729 
(4.883) 

0.619 
(0.138) 

21.479 
(4.778) 

0.611 
(0.138) 

21.184 
(4.700) 

0.574 
(0.129) 

19.725  
(4.427)  

0.05 1.421 
(0.315) 

17.973 
(3.978) 

1.404 
(0.314) 

17.738 
(3.960) 

1.387 
(0.309) 

17.506 
(3.893) 

1.371 
(0.307) 

17.274 
(3.870) 

1.287 
(0.287) 

16.131  
(3.594)  

0.10 2.027 
(0.452) 

16.076 
(3.586) 

1.994 
(0.445) 

15.803 
(3.526) 

1.974 
(0.445) 

15.633 
(3.523) 

1.954 
(0.435) 

15.461 
(3.442) 

1.830 
(0.409) 

14.420  
(3.222)  

30 

0.01 0.775 
(0.141) 

26.364 
(4.795) 

0.770 
(0.140) 

26.174 
(4.770) 

0.763 
(0.139) 

25.921 
(4.710) 

0.758 
(0.139) 

25.685 
(4.709) 

0.722 
(0.132) 

24.421  
(4.451)  

0.05 1.745 
(0.320) 

21.719 
(3.981) 

1.721 
(0.317) 

21.418 
(3.945) 

1.712 
(0.313) 

21.295 
(3.896) 

1.700 
(0.311) 

21.133 
(3.860) 

1.627 
(0.294) 

20.169  
(3.640)  

0.10 2.484 
(0.453) 

19.462 
(3.549) 

2.468 
(0.454) 

19.324 
(3.556) 

2.447 
(0.448) 

19.153 
(3.504) 

2.421 
(0.449) 

18.942 
(3.510) 

2.312 
(0.424) 

18.053  
(3.311)  

100 

0.01 1.414 
(0.140) 

46.576 
(4.626) 

1.414 
(0.142) 

46.568 
(4.665) 

1.409 
(0.143) 

46.406 
(4.716) 

1.406 
(0.142) 

46.300 
(4.672) 

1.386 
(0.139) 

45.631  
(4.580)  

0.05 3.180 
(0.319) 

38.742 
(3.884) 

3.175 
(0.318) 

38.678 
(3.871) 

3.169 
(0.314) 

38.603 
(3.825) 

3.160 
(0.319) 

38.486 
(3.887) 

3.112 
(0.311) 

37.895  
(3.786)  

0.10 4.536 
(0.454) 

34.920 
(3.498) 

4.513 
(0.447) 

34.747 
(3.440) 

4.513 
(0.456) 

34.744 
(3.509) 

4.500 
(0.449) 

34.640 
(3.453) 

4.432 
(0.444) 

34.108  
(3.414)  

 
Table 6. Estimated future observation from the Rayleigh distribution under three losses and HPD predictive 
interval for future observation.  

     α =0.01 α =0.05 α =0.10 
p =0.5 p =1.0 p =1.5 

1H  2H  1H  2H  1H  2H  
 
 
 

10 

0.5 1.291 1.478 0.947 0.798 0.598 0.022 3.552 0.092 2.713 0.160 2.321  
1.0 1.252 1.431 0.925 0.778 0.580 0.020 3.245 0.091 2.643 0.157 2.263  
1.5 1.220 1.394 0.902 0.761 0.566 0.021 3.351 0.089 2.576 0.155 2.207  
2.0 1.292 1.361 0.879 0.743 0.554 0.021 3.255 0.088 2.511 0.152 2.153  
5.0 1.054 1.201 0.782 0.660 0.493 0.019 2.744 0.081 2.211 0.139 1.900  

 
 
 

20 

0.5 1.269 1.442 0.944 0.798 0.597 0.024 3.249 0.101 2.609 0.173 2.277  
1.0 1.253 1.423 0.933 0.789 0.590 0.025 3.192 0.100 2.570 0.171 2.246  
1.5 1.237 1.404 0.923 0.777 0.582 0.025 3.180 0.099 2.543 0.170 2.221  
2.0 1.224 1.390 0.911 0.770 0.577 0.024 3.128 0.098 2.510 0.168 2.190  
5.0 1.143 1.297 0.851 0.720 0.539 0.023 2.919 0.093 2.343 0.159 2.048  

 
 
 

30 

0.5 1.263 1.432 0.944 0.799 0.598 0.026 3.195 0.104 2.572 0.178 2.263  
1.0 1.254 1.421 0.936 0.792 0.593 0.026 3.154 0.103 2.549 0.176 2.244  
1.5 1.244 1.409 0.926 0.784 0.589 0.026 3.122 0.103 2.528 0.175 2.223  
2.0 1.235 1.400 0.920 0.780 0.585 0.026 3.109 0.102 2.509 0.174 2.205  
5.0 1.176 1.332 0.881 0.744 0.557 0.025 2.954 0.098 2.390 0.167 2.103  

 
 
100 

0.5 1.257 1.420 0.942 0.797 0.599 0.028 3.085 0.108 2.520 0.184 2.239  
1.0 1.253 1.416 0.940 0.796 0.597 0.028 3.079 0.108 2.517 0.184 2.236  
1.5 1.251 1.413 0.938 0.794 0.596 0.028 3.075 0.108 2.510 0.183 2.231  
2.0 1.247 1.409 0.936 0.792 0.594 0.028 3.061 0.108 2.503 0.183 2.224  
5.0 1.228 1.387 0.922 0.781 0.585 0.028 3.016 0.106 2.465 0.180 2.192  



Bayesian estimation of the paramater of rayleigh distribution under the extended Jeffrey’s prior 

56 

8. Data Analysis 
 
For illustrative purposes, we consider the following real data set which arose in tests on 
endurance of deep grove ball bearings [Lawless [21], p.228]. The data are the number of 
hundreds of million revolutions before failure for each of the  ball bearings in the life test:  

 
 
To study the goodness of fit of the Rayleigh model, we compute the  statistic and it is  
with the corresponding p-value is . Therefore, the high p-value clearly suggests that one 
parameter Rayleigh model can be used to analyze this data set. Here, our goal is to estimate the 
Rayleigh parameter for this data set under three different losses. At the same time, we are 
interested to study the HPD intervals for the parameter. We also find the future observation 
based on the given data and estimated predictive distribution is shown in Figure 1, and look into 
the behavior of HPD intervals for the predicted observation. Tables 7-10 summarize the findings.  
From Table 7, it is observed that the estimates of  are very closer and the corresponding risks 
are fairly small except for general entropy loss at . HPD intervals are fair enough from 
coverage point of view (Table 8). Though the estimated future observations (Table 9) are not so 
encouraging, HPD intervals (second intervals in each row) for future observation are reasonably 
good (Table 10). 

 
Figure 1. Estimate of the predictive distribution for the given data set. 
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Table 7. Bayes estimates of the parameter and the corresponding risk estimates under 
three losses for the data set.  

     p =0.5 p =1.0 p =1.5 
      

0.5 0.582 0.0039 0.586 0.0066 0.578 0.00138 0.576 0.0055 0.574 0.0124  
1.0 0.576 0.0037 0.579 0.0064 0.571 0.00135 0.570 0.0054 0.568 0.0120  
1.5 0.570 0.0035 0.573 0.0062 0.566 0.00132 0.564 0.0053 0.562 0.0118  
2.0 0.564 0.0034 0.567 0.0060 0.559 0.00130 0.558 0.0052 0.556 0.0116  
5.0 0.531 0.0027 0.534 0.0050 0.527 0.00115 0.526 0.0046 0.525 0.0103  

 
Table 8. HPD intervals of the parameter for the data set. 

 1 2( , )H H  
α =0.01 α =0.05 α =0.10 

0.5 (0.455, 0.794) (0.481, 0.734) (0.496, 0.706) 
1.0 (0.451, 0.782) (0.477, 0.724) (0.491, 0.697) 
1.5 (0.448, 0.770) (0.473, 0.714) (0.487, 0.688) 
2.0 (0.444, 0.759) (0.469, 0.705) (0.482, 0.679) 
5.0 (0.423, 0.702) (0.446, 0.655) (0.458, 0.632) 

 
Table 9. Estimated future observation for the data set under three losses. 

    
p =0.5 p =1.0 p =1.5 

0.5 0.730 0.828 0.544 0.460 0.344  
1.0 0.722 0.819 0.538 0.455 0.340  
1.5 0.714 0.810 0.532 0.450 0.337  
2.0 0.706 0.801 0.527 0.445 0.333  
5.0 0.666 0.755 0.497 0.420 0.315  

 
 

Table 10. Classical, Bayesian predictive and HPD predictive intervals for future 
observation of the data set.  

 CI       
0.01        

      
0.05        

      
0.10        

      
 
9. Concluding Remark 
 
In this article, we have primarily studied the Bayes estimator of the parameter of the Rayleigh 
distribution under the extended Jeffrey’s prior assuming three different loss functions. The 
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estimates are reasonably good under the simulation study and the real data analysis. The 
extended Jeffrey’s prior gives the opportunity of covering wide spectrum of priors to get Bayes 
estimates of the parameter - particular cases of which are Jeffrey’s prior and Hartigan’s prior. 
The HPD intervals allow quite reasonable coverage for the estimates of the Rayleigh parameter. 
It is also noticed that the Bayes predictive intervals are favorable than the classical predictive 
intervals as it offers much shorter intervals than the classical intervals. The HPD intervals for 
future observation are also quite good. Real life data analysis echoes the same trend that has been 
observed in the simulation study. 
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