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Abstract: The bipolar mean has recently been put forward with the aim of 

summarizing ordinal variables [1]. It is a synthetic distribution where the total 

size n is concentrated on one of the k categories of the variable or, at most, on 

two consecutive categories. This measure is derived according to the usual 

statistical dominance criterion that is based on retro-cumulative frequencies. 

Further improvements to the bipolar mean include extensions to discrete 

quantitative variables and a new variability measure, i.e. the “mean deviation 

about the bipolar mean”. The bipolar mean can also be applied to ordinal 

variables whose categories are expressed as scores on a numerical scale. Hence, 

this new way of summarizing such variables can be useful in sensory analysis, 

where it is often necessary to compare frequency distributions representing the 

evaluation of certain characteristics made by judges or tasters about different 

products. The assessment is usually based on simple synthetic measures such as 

the arithmetic mean or the median. These indexes however, can result in 

contradictory answers. 

In this work, we present the normalization of the mean deviation of the bipolar 

mean. Moreover, some empirical evidence in sensory analysis is given with the 

purpose of showing how the bipolar mean and the relative mean deviation can 

sometimes overcome these problems of comparison. 

 

Keywords: Bipolar mean, statistical dominance, retro-cumulative frequencies, 

mean deviation about the bipolar mean, maximum value of the mean deviation 

about the bipolar mean, sensory analysis. 
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1. Introduction 
 

In sensory analysis, it is often necessary to compare rating scale scores given by a panel of n 

assessors (judges, tasters, consumers) for certain product characteristics (descriptors). 

Suppose, for example, that seven judges give scores from 1 (very bad) to 5 (very good) for two 

descriptors (A and B) of three “grappe” (G1, G2, G3) [2]: the aim is to form a ranking of the three 

grappe for each descriptor. Usually, the comparison is made using simple indexes such as the 

median
1
 (Me henceforth) or the arithmetic mean ( henceforth). 

In Table 1 we show the rankings obtained with these two indexes. It is clear that when we use the 

Me, the three grappe are equivalent in the case of descriptor A while G3B is preferred in the case 

of descriptor B. The conclusions reached are reversed when  is used: the three grappe are 

equivalent in the case of descriptor B, while G3A is preferred in the case of descriptor A.  

 
Table 1. Score distributions, arithmetic means and medians (k = 5; n = 7) 

Scores 
Descriptor A Descriptor B 

G1A G2A G3A G1B G2B G3B 

1 3 2 2 1 0 1 

2 3 3 4 3 1 2 

3 0 2 0 0 5 0 

4 1 0 0 1 1 4 

5 0 0 1 2 0 0 

Me 2 2 2 2 3 4 

 1,857 2 2,143 3 3 3 

 

This type of problem can be resolved by using the bipolar mean. W. Maffenini and Michele 

Zenga [5] proposed the bipolar mean as a synthesis for ordinal qualitative characters. Later 

Maffenini and Mariangela Zenga [6] extended the bipolar mean to discrete variables and they put 

forward a new variability measure: the “mean deviation about the bipolar mean” that can also be 

computed for ordinal qualitative characters whose categories are expressed on a ranking scale as 

shown in our example. 

The mean deviation about the bipolar mean is an absolute index of variability and as for all these 

types of indexes it is useful to set its maximum value. To do this, we define its maximum 

variability distribution [3], then we derive the maximum bipolar mean and the maximum value 

of the index. 

This article is structured as follows: in Section 2 there are some methodological details about the 

bipolar mean, the mean deviation about the bipolar mean and its maximum. In Section 3 we 

introduce an example to show the usefulness of this index in the framework of sensory analysis 

and Section 4 concludes the paper. 

 

 

 

 

                                                      
1
  The Me is often preferred since it is less sensitive to outlying scores, i.e. sporadic cases which are distant from the 

scores given by the majority of the judges. 
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2. The Bipolar Mean 
 

The bipolar mean is a distribution where the total size n is concentrated on a single category of 

an ordered distribution (or a single value of a discrete variable) or, at most, on two adjacent 

categories (values), and it is coherent with the usual statistical dominance criterion based on 

retro-cumulative frequencies (order W). 

Each empirical distribution has its own corresponding bipolar mean which synthesizes the 

distribution and satisfies the ordering requirement. 

Let X be a discrete variable, taking the values 1, 2, …, s,…, k and let n1, n2,…, ns,…, nk 

( ∑
1

k

s
snn



 ) be the corresponding frequencies. 

Let B be the collection of all possible distributions that satisfy the constraints: 

 

∑
1
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s

nnksn
ss


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The distributions of B can be compared according to the principle of statistical dominance that is 

based on decreasing cumulative frequencies: 
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with at least one strict inequality. Usually, it is not possible to order all the distributions 

belonging to B according to W. However, we can focus on a subset B* which only contains 

distributions with the following characteristics: 

 

i. n is concentrated on only one of the k values of X; 

ii. n is concentrated on two adjacent values of X. 

 

The number of distributions of B* is nk–n+1. 
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A function H, coherent with W, is introduced with the aim of ordering all the distributions of B 

and then also the distributions not belonging to B*, i.e.: 

 

   k
W

k nnnn ,...,  ,..., 1

''

1           kk nnHnnH ,...,  ,..., 1

''

1  .     (1) 

 

The sum of the retro-cumulative frequencies: 
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is a function that satisfies the relation (1). It is easy to verify that, in correspondence with the nk–

n+1 distributions belonging to B*, sorted in ascending order, G takes values n, n+1, …, 2n–1, 2n, 

2n+1,…, kn–1, kn. 

The value n comes from the distribution  0,,0, n , …, the value kn from  n,0,,0  . 

Furthermore, the values n, 2n, 3n, ..., kn derive from those distributions for which the total size n 

is concentrated on one value of X, while the remaining values come from those distributions 

where n belongs to two adjacent values of X. 

It is possible to demonstrate that, for all distributions belonging to B, the function G: 

(i)  assumes integer values in the range [n, kn], i.e. those values that correspond to the 

distributions belonging to B*; 

(ii)  may be expressed as: 

∑
1 1

k

s

k

s

ss
nsRG

 

          (2) 

 

It follows that, in correspondence with the distributions of B that do not belong to B*, G takes 

values in the interval [n, kn]. Hence the collection B is shared among nk–n+1 subsets (i.e., the 

same number of distributions that belong to B*). The function G assigns the value g to all the 

distributions belonging to the same subset which includes a single member of B*. Therefore, 

these distributions are equivalent according to the order W. 

It is possible then, to represent all distributions of the same subset of B with the unique 

distribution belonging to B*, since it is the “ultimate synthesis” as it puts the total size n on a 

single value of X or, at most, on two adjacent values.  

This distribution is the Bipolar Mean (BM). 

To obtain the BM of a frequency distribution it is useful to consider the function: 
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where nnf
ss

 . 

From (3) it is evident that S  is the weighted arithmetic mean of X and it assumes the values 

1, 1+1/n,…, 2–1/n, 2, 2+1/n,…, k. 
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Obviously, the function S  is coherent with the order W and all the properties for the B subsets 

also hold for this case. S  takes the integer values 1, 2, …, k on those distributions where the 

total size n is concentrated on a single value of X (BM of type I) and the decimals on those 

distributions where n is divided between two adjacent values (BM of type II). 

To obtain the BM we can proceed as follows: 

(i)  when S  is integer (1, 2,..., s, …, k), the BM puts the total size n on the corresponding 

values 1, 2,..., s, …, k; 

(ii)  when S  is a non-integer between s and s+1, s=1, …, (k-1), the BM puts on the value 

s+1 the frequency ns+1 that corresponds to the product of the fractional part of S  and n, 

and on the value s the frequency ns = n–ns+1. 

 

2.1 The Mean Deviation about the Bipolar Mean 

Let  be the BM of X; let 
sN  be the s-th cumulative frequency of X; let 

sN
~

 be s-th cumulative 

frequency of . The Mean Deviation about BM is given by: 

 

∑
1

~1
k

s

ss NN
n

S


 .          (4) 

 

W. Maffenini and Mariangela Zenga (2006) [6] demonstrated that 
S  and the Mean Deviation 

about the Arithmetic Mean 
μS  are related as follows: 

 

 SS             (5) 

 

where the equality holds iff  = s, s = 1, 2, …, k namely in the case of BM of type I. 

 

2.2 Maximum variability distribution and maximum Mean Deviation about the Bipolar 

Mean 

To make a comparison, the Mean Deviation about the BM can be expressed as a relative 

measure. This can be done in two ways: (i) dividing the BM by an appropriate mean; (ii) dividing 

the BM by the value that it assumes in a maximum variability distribution. 

In (i), it would seem appropriate to choose the arithmetic mean, taking into account its links with 

the function that determines the BM. In (ii), first it is necessary to define the maximum 

variability distribution that is different depending on whether the number of cases (n) is even or 

odd. Once this is derived, the corresponding BM is computed, taking into account that also the 

maximum value of X (k), (obviously the same when comparing distributions), may be even or 

odd. 

Maximum variability distribution for discrete variables (definition) 

To distinguish the cases even or odd, we suggest indicating the even number with n and the odd 

number with m = n + 1; the corresponding generic frequencies will be indicated as ns and ms. 

Let X be a discrete variable that takes values 1, 2, ..., s, ..., k with frequencies whose sum may be 

even or odd. 
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Case 1) Odd number: ∑
1

k

s

snn


 . The maximum variability distribution of X is 

(1) (n/2, 0,…, 0,…, n/2) 

Case 2) Even number: ∑
1

1
k

s

smnm


 . The two maximum variability distributions of X 

are: 

(2a) (n/2+1, 0,…, 0,…, n/2); 

(2b) (n/2, 0,…, 0,…, n/2+1). 

 

Let *

S  be the maximum of 
S , we determine this with the bipolar mean * representing the value 

*s  (i.e. the value taken by the function S  in correspondence with the maximum variability 

distribution) or, identically, with the value *
 (i.e. the value taken by  in correspondence with 

this distribution [see (3)]). From the equation (4) of 
S  we immediately derive the expression for 

*

S  

 

∑
1

*** ~1
k

s

ss
NN

n
S






          (6) 

 

where *

sN  and *~
sN  are the cumulative frequencies obtained respectively, from the maximum 

variability distribution and its BM *. As mentioned before, to find the maximum of *

S  we have 

to consider that k can be even or odd. Only in the case «odd k, even n» the BM of the maximum 

variability distribution is of type I, while in all the other cases it is of type II. 

 

Case A: «odd k, even n» 

If n is even, it can be equally shared between the smallest value 1 and the largest k. Since the 

arithmetic mean   21*  k  is an integer, the BM is of type I and puts the total size n on the 

value (k+1)/2. The maximum mean deviation about the bipolar mean is: 

 

2

1* 


k
S


. 

 

Case B: «odd k, odd n» 

If n is odd there are two maximum variability distributions since n cannot be equally shared 

between the extreme values 1 and k. In fact, one frequency must be assigned to the smallest 

value 1 (case B1) or to the largest value k (case B2). In both cases, the maximum variability 

mean is not an integer and the bipolar mean is of type II. The maximum mean deviation about 

the bipolar mean is, for both cases B1) and B2): 

 

n

nk
S

1

2

1* 
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
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The result is similar to that achieved in case A with even n, but now the term (k-1)/2 is multiplied 

by the corrective factor (n-1)/n. 

 

Case C: «even k, even n» 

If both n and k are even, the arithmetic mean   21*  k  is not an integer and therefore the BM 

is of type II. The maximum mean deviation about the bipolar mean is: 

 

2

2* 


k
S


. 

 

Case D: «even k, odd n» 

If k is even and n is odd, the mean of the maximum variability distribution is not an integer: n 

cannot be equally shared between the extreme values. Consequently, one frequency must be 

assigned to the smallest value 1 or to the largest value k. In both cases the BM is of type II. 

The maximum mean deviation about the bipolar mean is: 

 

n

nk
S

1

2

2* 



. 

 

The result is similar to that achieved in case C with even n, but now the term (k-2)/2 is multiplied 

by the corrective factor (n+1)/n. The four cases are summarized in Table 2. 

 

Table 2. Expressions of *

S  given n (number of statistical unities) and k (maximum value of X) 

 even n odd n 

odd k 
2

1k  
n

nk 1

2

1 
 

even k 
2

2k  
n

nk 1

2

2 
 

 

 

3. Examples 
 

To show how the bipolar mean can be used in sensory analysis, we consider the same example 

discussed in the introduction. We compute the BM, according to the explanation in Section 2, for 

the score distributions of seven judges (see Table 1) regarding two descriptors (A and B) relative 

to three grappe (G1, G2, G3). 

As an example, we show the calculus of the BM for G1A and G2A. In the case of G1A, given that 

s =1,857, we use the rule ii) which assigns the frequency 6875,07   to score 2 and the 

frequency 7-6=1 to score 1. From Table 3, it is clear that the BM (1, 6, 0, 0, 0) concentrates 86% 

of the frequencies on score 2 and 14% on score 1 while the MB (0, 7, 0, 0, 0) concentrates 100% 

of the frequencies on score 2. We found that the BMs of the other distributions followed the same 

method. 
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Table 3. Score distributions and their bipolar means and synthetic indexes 

Scores 
Descriptor A Descriptor B 

BM(G1A) BM(G2A) BM(G3A) BM(G1B) BM(G2B) BM(G3B) 

1 1 0 0 0 0 0 

2 6 7 6 0 0 0 

3 0 0 1 7 7 7 

4 0 0 0 0 0 0 

5 0 0 0 0 0 0 

s  ( ) 1,857 2 2,143 3 3 3 

S  0,571 0,571 0,571 1,429 0,286 1,143 

*

S  
7

6

2

15



=1,714 1,714 1,714 1,714 1,714 1,714 

*/  SS % 33,31% 33,31% 33,31% 83,37% 16,69% 66,69% 

 

The distributions G1A, G2A et G3A belong to three different subsets of B and they are summarized 

by the BM of the corresponding subset. We can see that the order of the BM is the same as that 

given by . Note that since BM is a frequency distribution it can give us broader interpretations 

relative to  which instead, is a single value. 

The situation is quite different for the descriptor B, whose three distributions are summarized by 

the same BM. In fact, since s =3 for G1B, G2B and G3B and using the rule i) (that assigns all the 

frequency to the same score) we find a BM (0, 0, 7, 0, 0) that concentrates 100% of the 

frequencies on score 3. It is therefore not possible to establish an order for the three distributions 

that are equivalent according to the order W. 

In this case, it is useful to consider the values of the mean deviation about the BM which are 

different for each one of the three distributions (Table 3). The index is 83,37% of its theoretical 

maximum for G1B , 16,69% for G2B and 66,69% for G3B. Hence, it is possible to rank the 

judgements on the three grappe even when they have the same BM. This is possible because we 

take into account the variability of judgements given by the seven judges. We will draw the 

conclusion that the distribution G2B is better than G3B and the latter is better than G1B. 

 

 

3.1 Distributions of different number 

Let’s now consider some distributions regarding data collected during Vinitaly’s 35
th

 edition, 

held in Verona in 2001. At this event, a test was performed on consumers, called Grappa & C. 

Tasting. In general, each product had a different tasting frequency, because the number of people 

tasting one or other product varied. 

We selected five grappe which showed differences for the “taste-olfactory” (to) descriptor on a 

scale ranking from 1 (very bad) to 6 (very good). The distributions, listed according to the 

increasing value of s  (), are shown in Table 4. Since frequencies have a different total n, we 

also provide the BM in percentage form to make comparative analysis more effective. 

G1(to) appears to have the “worst” distribution since it shows the smallest  (together with the 

corresponding BM) and the highest variability index (60% of the maximum). Instead, G5(to) has 

the “best” distribution, showing the highest mean and the smallest variability index (22,22% of 
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the maximum). Similar arguments can also be used for other distributions. The main conclusion 

is that the order established by the mean is not altered by the variability index. 

 
Table 4. Frequency distributions and BM of the scores given by n different tasters for five grappe according 

to the taste-olfactory descriptor and correspondent indexes 

Grappe G1(to) G2(to) G3(to) G4(to) G5(to) 

Scores ns  % ns  % ns  % ns  % ns  % 

1 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 

2 2 0 0 2 0 0 1 0 0 1 0 0 0 0 0 

3 1 10 100 6 11 73 7 5 31 1 0 0 1 0 0 

4 4 0 0 1 4 27 5 11 69 7 4 19 2 0 0 

5 1 0 0 3 0 0 2 0 0 4 17 81 10 17 100 

6 0 0 0 1 0 0 1 0 0 8 0 0 4 0 0 

n 10 15 16 21 17 

s  ( ) 3 3,2667 3,6875 4,8095 5 

S  1,2 0,8 0,5 0,7619 0,4706 

*

S  


2

26
2 



15

16

2

26
2,133 



2

26
2 



21

22

2

26
2,095 



17

18

2

26
2,118 

*/  SS % 60% 37,51% 25% 36,36% 22,22% 

 

Finally, we investigate what happens when the distribution S1(to) is observed instead of the score 

distribution G1(to) (see Table 5 with G2(to)). 

 
Table 5. Comparison of score distributions S1(to) and G2(to) 

Scores 
S1(to) G2(to) 

ns  ns  

1 0 0 2 0 

2 1 0 2 0 

3 6 8 6 11 

4 3 2 1 4 

5 0 0 3 0 

6 0 0 1 0 

N 10 15 

s  ( ) 3,2 3,2667 

S  0,2 0,8 

*

S  2 2,133 

*/  SS % 10% 37,51% 

 

In this situation, the mean of distribution S1(to) is smaller than the mean of G2(to) but the 

difference is minimal (3,2 vs 3,2667). On the contrary, the variability index of S1(to) is 

appreciably smaller than G2(to) (37,51% of the theoretical maximum for the first vs 10% of the 

second). In this case, the order established by  could be modified, judging the first distribution 

as “the best one”; where in fact a smaller variability in the judgements is recognised, despite its 

slightly smaller mean. 
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4. Conclusions 
 

Recently, Walter Maffenini and Michele Zenga [5] introduced a new synthesis for ordinal 

variables: the Bipolar Mean. This is a distribution that concentrates the total size n on one of the 

k categories of the variable or, at most, on two consecutive categories and it is consistent with the 

principle of statistical dominance. Later, Maffenini and Mariangela Zenga [6] extended the 

bipolar mean to discrete variables while defining a variability measure: the Mean Deviation 

about the Bipolar Mean. This measure can also be computed for ordinal qualitative variables 

when their categories are expressed as scores on a rating scale. 

The mean deviation about the bipolar mean is an absolute index of variability and, with the aim 

of comparison, it is interesting to set its maximum value. Brentari et al. [3] e [4] defined the 

maximum variability distribution and its bipolar mean. These measures are useful in the 

framework of sensory analysis where score distributions that synthesize the evaluations of n 

subjects relating to certain characteristics of different products are compared. 

In this study, we applied the bipolar mean and its dispersion measure for evaluating certain types 

of food. In doing so, we highlight the summarizing feature of this index. The distributions used 

in the empirical analysis belong to two groups: the first contains the same number of cases while 

the second contains a different number of cases. We found that: 

 two (or more) distributions with the same arithmetic and bipolar mean are equivalent 

(according to the order established by these factors). If the correspondent variability 

measures have different values, we recognize the superiority of the less-variable 

distribution, since it shows less “dispersion” among the judgments made; 

 two (or more) distributions with roughly the same mean values can be ranked in a 

different way with respect to the bipolar mean when their variability measures are 

significantly different. 
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