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Abstract: Natural rubber latex IgE-mediated hypersensitivity is one of the most 

important health problems in allergy during recent years. The prevalence of 

individuals allergic to latex shows an associated hypersensitivity to some plant-

derived foods, especially freshly consumed fruit. This association of latex allergy 

and allergy to plant-derived foods is called latex-fruit syndrome. The aim of this 

study is to use the differential geometric generalization of the LARS algorithm to 

identify candidate genes that may be associated with the pathogenesis of allergy 

to latex or vegetable. 
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1. Introduction 
 

Natural rubber latex (NRL) is a product made primarly from the rubber tree, Hevea brasiliensis. 

NRL is used in more than 40000 medical devices, such as gloves, catheters, face masks, 

stethoscope, et cetera. NRL is also used in other nonmedical products, such as baloons, condoms, 

clothes, shoe soles, et cetera. IgE-mediated allergy to NRL is a significant health problem in 

industrialized contries, especially among health care workers, patients with congenital 

malformations, especially chidren with spina bifida, and children with a history of multiple 

surgical interventions [5]. According to some researchs, between 10% and 17% of medical 

personnel in Europe and US are believed to be sensitive to NRL. The prevalence of NRL allergy 

in patients with spina bifida is about 50% in industrialized countries, while is close to 0 in non 
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industrialized countries. Moreover, sensitivity was found in about 34% of children with a history 

of 3 or more surgical interventions, that are a risk factor for the development of NRL allergy in 

children but not in adults [5]. 

Initial symptoms for people allergic to NRL are localized itching, erythema, or contact urticaria 

after few minutes from the NRL exposure. Progressive sensitization can also lead to generalized 

urticaria, angioedema, rhinitis, conjunctivitis, asthma, and anaphylactic shock minutes after 

dermal or mucosal contact with NRL proteins. An increasing number of individuals allergic to 

NRL reports severe reactions to latex, including generalized urticaria, bronchospasm, and 

hypotension. 

Approximately 30-50% of individuals who are allergic to NRL show an associated 

hypersensitivity to some plant-derived foods, especially fresh fruit. This association of allergy to 

latex and allergy to plant-derived foods is called latex-fruit syndrome. An increasing number of 

plant sources, such as avocado, banana, chestnut, kiwi, peach, tomato, potato and bell pepper, has 

been associated with this syndrome [15]. Aim of this paper is to identify a set of genes to 

screen the molecular profiles of patients with allergy to latex from patients with allergy to fruit. 

In literature several methods have been proposed to identify genes that can be used to 

discriminate between two or more groups. For this kind of problems the number of variables, say 

p, can be much larger than the sample size n. In this case, it is often assumed that only a small 

number of variables (genes) contributes to the response, which leads to assume the sparsity of the 

model. For sparse model we mean a generic regression model with the coefficient vector  sparse, 

i.e. with many elements equal to zero. In this field, many variable selection techniques for high 

dimensional statistical models are based on the penalized likelihood approach. Some examples are 

the least absolute shrinkage and selection operator (LASSO) estimator  

 

= argmin{||y-X ||
2
-|| ||1} 

 

proposed by Tibshirani [14], where ||y-X ||
2
 is the OLS loss function, ||||1  is the L1-norm of 

the parameter vector and  is a positive tuning parameter used to select the trade-off 

between sparsity of the estimated parameter vector and the prediction behaviour of the 

model. Other important examples are the path following algorithm proposed by Park and 

Hastie [12] to estimate a generalized linear model with L1-penalty function and the smoothly 

clipped absolute deviation (SCAD) penalized estimator proposed by Fan et al. [8], where the 

loss function is ||y-X ||
2
 and the penalty function is a quadratic spline function with knots at  

and a, with  the tuning parameter and a a given constant.  

In a recent paper, Efron et al. [7] introduced a new method to select important variables in a 

linear regression model called least angle regression method (LARS). LARS algorithm can be 

described as follows. Starting with all coefficients equal to 0, the LARS algorithm finds the 

covariate that is most correlated with the response variable and proceeds on this direction. Then, the 

algorithm takes the largest step possible in the direction of this covariate until some other covariate 

has as much correlation with the current residual. LARS algorithm proceeds in a direction 

equiangular between the two covariates until a new covariate earns its way into the most 

correlated set (A) and then proceeds in the direction that has an equal angle with the three covariates 

until a new covariate is included in A, and so on. In recent years, there has been an enormous 

amount of research activity devoted to automatic model-building algorithms: Yuan and Lin [16] 

have extended LARS algorithm to linear regression models with grouped variables; Park and 
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Hastie [12] have proposed a path following algorithm for generalized linear models with L1-

penalty function; Rosset and Zhu [13] studied the generic regularized optimization problem for 

almost quadratic loss functions with L1-penalty. These algorithms are based on the use of the L1-

penalty function to define a path in the parameter space. Aim of this paper is to identify a set of 

differentially expressed genes using the differential geometric LARS (dgLARS)[3]. As we shall 

see in the following of this paper, the geometrical theory underlying the dgLARS can be used 

to extend the sure independence screening method [9] used when we have an ultra-high 

dimensional feature space (p>>n), as suggested by Augugliaro and Mineo [2]. 

 

 

2. Differential Geometric LARS (dgLARS) algorithm 
 

Let Y=(Y1, Y2, . . . , Yn)
T
 be a random variable vector having a probability density function  

 

p Y (y; , ) = a(y; ) exp{ (y
T
 − k ())},      yYR

n
,     (1) 

 

with respect to a σ-finite measure  on R
n
, where a(

.
) and k(

.
) are specific given functions, the 

canonical parameter  varies in the subset ΘR
n
 and  varies in a subset Λ of R

+
. The model 

(1) is called exponential dispersion model [10]. We have chosen to use this model for its high 

flexibility and for its very general probabilistic assumptions. We denote the mean value of Y by 

µY =µ(). Standard theory on the exponential dispersion model tells us that the mean value and the 

canonical parameter are related to the gradient of the function k(
.
), namely, µ()=∂k()/∂ (see 

[10] for more details), which is called mean value mapping. Since µ(.) is a one-to-one 

function from intΘ onto =µ(intΘ), the exponential dispersion model may be parameterized by 

(µ;σ
2
), where σ

2
=

-1
 is called dispersion parameter. In what follows we shall assume that the 

dispersion parameter is fixed. Under this assumption, following Amari [1], the parameter space 

can be treated as a n -dimensional Riemannian manifold where µY  plays the role of coordinate 

system and the Fisher information matrix is a Riemannian metric. A generalized linear model is 

completely specified by the following assumptions: 

 

a) y=(y1, y2, . . . , yn)
T
 is a set of n independent observations taken from (1); 

b) for each random variable Yi we have a column of covariates xi=(xi1, xi2,…, 

xip)
T
XR

p
, with p<n. These covariates are related to the mean value of Y by a known 

function such that µi=f(xi
T
), where BR

p
; in order to simplify our notation, we 

denote µ()=(f(x1
T
), f(x2

T
),…, f(xn

T
))

T
. We assume that µ(

.
) is an embedding with 

domain B; 

c) the dispersion parameter σ
2
 does not depend on the vector of covariates. 

Given the assumption (b), µ(B)=B is a Riemannian submanifold of , then we can generalize 

the notion of angle between two given vectors. Let () be a differentiable curve. Following Kass and 

Vos [11], we have that the derivative of the log-likelihood function L (()) with respect to βi is 

given by 

 

))((
))(());(())((

γ
γγγL

ii βμ
βrβμβ          (2) 
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where 
))((

.;.
γβμ

 is the inner product between the current residual vector r (()) and the i-th 

base of the tangent space of B at µ(()). Using expression (2) we have the following differential 

geometric identity 

 

( ( )) ( ( ))

1/ 2

( ( ))

( ( )) cos( ( ( ))) ( ( )) ( ( ))

cos( ( ( ))) ( ( )) ( ( ( )))

i ii γ γ

i iγ

L γ γ γ γ

γ γ I γ

 



     

  

μ β μ β

μ β

β β r β μ β

β r β β
    (3) 

 

where ))(( γi β  is the local angle between r (()) and ))(( γ
i
βμ , Ii(()) is the expected Fisher 

information for () and 
))(( γβμ

  is the norm defined on the tangent space of B at µ(()). 

Condition (3) shows that the gradient of the log-likelihood function does not generalize the 

notion of equiangular condition, since we are not considering the variation related to (Ii(()))
1/2

 . To 

overcome this problem, Augugliaro and Wit [3] propose a generalization of the LARS algorithm 

based on the following condition: 

 

))((

2/1 ))(()))((cos())(()))((())((
γii

u

i γγLIr
βμ

βrββββ       iA   (4) 

 

where ))(( β
u

ir  is the i-th Rao score statistic evaluated in () and A is the active set, namely, the set 

of indices of covariates that are included in the actual model. Condition (4) is called generalized 

equiangularity condition and it is used in [3] to define a method that generalizes LARS to 

generalized linear models. This method is called dgLARS and the interested reader can refer to 

[3] for more details about it. 

When we work in a ultra-high dimensional feature space, namely p>> n, the following expression 

 

 
2

))((

2

))((

))((






βμ
βr

β
u

ir = cos
2
(ρi(()))          (5) 

 

can be used to define a genuine generalization of the sure independence screening method [9] for 

generalized linear models. Using expression (5), Augugliaro and Mineo [2] have proposed the 

following method to identify the relevant variables in a generalized linear model defined in a 

ultra-high dimensional feature space. Following Fan and Lv [9], we consider 

 

ω=(cos
2
(ρ1( 0̂ )), cos

2
(ρ2( 0̂ )),…, cos

2
(ρp( 0̂ )))

T
, 

 

where 0̂  is the maximum likelihood estimate of the parameter of a generalized linear model with 

only the intercept. For a given value d<n, we sort the p component-wise magnitudes of the vector 

ω in decreasing order and define the submodel: 

 

Md={i{1, 2,…, p} : cos
2
(ρi( 0̂ )) is among the first d largest of all the corresponding values}. 
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This is a straightforward way to reduce the dimensionality from p to d. Then, submodel Md is 

studied by using the dgLARS algorithm. 

 

 

3. Application of dgLARS algorithm to a latex-fruit allergy data set 
 

In oder to identify a set of genes to screen the molecular profiles of patients with allergy to 

latex from patients with allergy to fruit, a logistic regression model estimated by using the dgLARS 

algorithm was applied to a DNA microarray data set. From a sample of 6 patients allergic to 

latex and from a sample of 5 patients allergic to vegetable food, peripheral blood mononuclear 

cells were isolated on ficoll gradient. Each sample was hybridized on Affymetrix human focus 

array and data were processed with Affymetrix MAS 5.0 software. These data sets are available 

from the internet site of the National Center for Biotechnology Information (NCBI), in the Gene 

Expression Omnibus (GEO) archives (URL: http://www.ncbi.nlm.nih.gov/geo/). The data sets 

reference is GSE13619. The two sample sizes are very low, but usually this is the dimension of 

the sample size of studies conducted in this field, since in the World the people affected from the 

latex-fruit syndrome are not so many and it is very difficult to lead a medical study with a big 

number of patients. Anyway, in spite of the sample size, we think that the following analysis is 

interesting in its own right. 

The expression profile of 8746 genes was used for the logistic regression model estimated by 

using the dgLARS algorithm. As suggested by Fan and Lv [9] a value of d = [n/log(n)] = 4 was 

used for the sure independence screening step.  

 

 Figure 1. Panel (a) shows the density of the Rao score test statistics evaluated at the point  )(ˆ
0γβ . Panel (b) 

shows the path of the Rao score test statistics as function of the number (k) of the algorithm 

 

Panel (a) in figure 1 shows the density of the Rao score test statistics evaluated at the starting 

point (0), while panel (b) shows the path of the Rao score test statistics. The number of variables 

with non-zero coefficients was selected using the Akaike Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC).  

http://www.ncbi.nlm.nih.gov/geo/
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 Figure 2. Panel (a) shows AIC and BIC used to select the number of predictors. Panel (b) shows the 

coefficients path of the selected variables 

 

In this setting, the Akaike Information Criterion (AIC) is defined as 

 

AIC = - 2 L(A()) + 2|A()| 

 
where |A()| is the cardinality of the active set, while the Bayesian Information Criterion (BIC) 

is defined as 

 
BIC = - 2 L(A()) + log(n) |A()|. 

 

Panel (a) in figure 2 shows AIC and BIC values as function of the number of variables wi th 

nonzero coefficients. Using these measures of goodness of fit only 3 variables were used for further 

analysis. Panel (b) shows the coefficient paths of the selected variables. This set of genes was also 

identified using the logistic regression model with L1-penalty function. The identified genes are the 

interleukin 13 (IL-13), the interleukin 4 (IL-4) and chemokine (C-X-C motif) receptor 6 

(CXCR6). In particular, the interleukin 13 (IL-13) and the interleukin 4 (IL-4) are closely related 

with the latex-fruit syndrome, since the products of these genes play a critical role in allergic 

reaction regarding antigen presentation, IgE synthesis, and activation of mast cell, respectively 

(see [6] and [4] for further details). The majority of food allergen-specific CD4
+
 T lymphocytes 

isolated from food-allergic individuals was found to synthesize high levels of IL-4 and IL-13. 

 

 

4. Conclusions 
 

In this paper we have used the differential geometric generalization of the LARS algorithm 

proposed by Augugliaro and Wit [3] and linked to the sure independence screening method by 

Augugliaro and Mineo [2] to select a set of genes to discriminate between patients with latex allergy 

and with fruit allergy. Latex-fruit syndrome is a well-defined disorder affecting from 20% to 60% 
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of patients with latex allergy. A number of environmental and genetic factors seems to 

contribuite to the latex-sensitivity phenotype. Although exposure to natural rubber latex products 

is necessary for sensitization, it is not sufficient. A number of other environmental and genetic 

factors seems to contribute to the latex-sensitive phenotype. Known risk factors for latex allergy 

include an atopic history, concomitant food allergies, and delayed skin reactions to NRL-

containing products. Although there is overwhelming support for a genetic component for allergic 

disease, the multigenic nature of the phenotype has made the identification of susceptibility genes a 

difficult task. A large number of studies have explored general risk factors for allergic disease by 

means of the candidate gene approach or genome-wide analyses which are based on the penalization 

methods, such as the generalized linear model with the L1-penalty function or the ridge regression. 

In this paper, we have seen that the dgLARS method can also be used with good results. 

In spite of the sample size very low, our analysis identifies two of the well known genes that are 

related with the latex allergy, namely the interleukin 4 (IL-4) and the interleukin 13 (IL-13), that 

several studies have identified. Products of these genes play a critical role in allergic reaction 

regarding antigen presentation, IgE synthesis, and activation of mast cell, respectively. 
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