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Abstract: For the purpose of exploring and modelling the relationships between a 

dataset Y and several datasets (X1, …, XK) measured on the same individuals, 

multiblock Partial Least Squares is a regression technique which is widely used, 

particularly in chemometrics. In the same vein, an extension of Redundancy 

Analysis to the multiblock setting is proposed. It is designed to handle the 

specificity of complex veterinary epidemiological data. These data usually consist 

of a large number of explanatory variables organized in meaningful blocks and a 

dataset to be predicted, e.g. the expression of a complex animal disease described 

by several variables. Some appropriate indices are also proposed, associated 

with different interpretation levels, i.e. variable, block and component. These 

indices are linked to the criterion to be maximized and therefore are directly 

related to the solution of the maximization problem under consideration. 

 

 

Keywords: Multiblock modelling, multiblock Redundancy Analysis, PLS Path 

Modelling, epidemiology 
 

 

1. Introduction 
 

Research in veterinary epidemiology is often concerned with assessing risk factors for complex 

animal health issues described by several variables. The associated data are usually organized in 

(K+1) blocks of variables, consisting of a large number of explanatory variables organized in K 
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meaningful blocks (X1, …, XK) and several variables to explain Y. For this purpose, multiblock 

Partial Least Squares [17] is a multiblock modelling technique which is widely used. 

Redundancy Analysis [8; 10] is another popular method for linking two datasets X and Y, which 

is more oriented towards the explanation of the dataset Y. In this paper, an extension of 

Redundancy Analysis to the multiblock setting is proposed. This method is introduced by 

maximizing a criterion that reflects the objectives to be addressed and the solution of this 

maximization problem is directly derived from the eigenanalysis of a matrix. Moreover, 

multiblock modelling gives valuable tools both for the explanation and the investigation of the 

relationships among variables and among datasets. For the various interpretation levels, i.e. 

variable, block and component, we propose relevant indices, related to the criterion to be 

maximized and therefore directly derived from the solution of the maximization problem under 

consideration. 

 

 

2. Method 
 

2.1 Multiblock Redundancy Analysis 

Consider the multiblock setting where we have (K+1) datasets: a dataset Y to be predicted from 

K datasets Xk (k=1, …, K). The Y table contains Q variables and each table Xk contains Pk 

variables. The merged dataset X is defined as [X1|…|XK] and contains P=∑k Pk explanatory 

variables. All these quantitative variables are measured on the same N individuals and supposed 

to be column centered. The main idea is that each dataset is summed up by latent variables which 

are linear combinations of the variables derived from each dataset, as illustrated in Figure 1. 

 

 
Figure 1. Conceptual scheme of the multiblock data structure, which highlights the relationships between the 

variable blocks (X1, …, XK, Y) and their associated latent variables (t1, …, tK, u) for the first dimension (h=1). 

 

More precisely, the method derives a global component t
(1)

 oriented towards the explanation of 

Y, that sums up partial components (t1
(1)

, …, tK
(1)

) respectively associated with the blocks (X1, 

…, XK). These components are computed following the maximization problem (1). 
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Other equivalent maximization problems may also be given which highlight other perspectives 

of the method [2]. We prove that the solution is given by v
(1)

 the eigenvector of the matrix (2). 
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(1)

   (2) 

 

The partial components (t1
(1)

, ..., tK
(1)

) are given by the normalized projection of u
(1) 

onto each 

subspace spanned by variables in blocks X1, …, and Xk respectively, as detailed in Equation (3). 
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where PXk=Xk(Xk'Xk)
-1

Xk' is the projector onto the subspace spanned by the variables from the 

Xk dataset. The coefficients ak
(1)

 are given by Equation (4). 
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This implies that the global component is given by Equation (5). 
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In order to obtain the second order solution, we regress the variables in the datasets (X1, …, XK) 

onto the first global component t
(1)

 and consider the residuals of these regressions. The same 

maximization is then performed by replacing the datasets by their associated residuals. 

Subsequent components can be found by reiterating this process. 

 

 

2.2 Associated interpretation tools at the variable level 

A main difference of multiblock Redundancy Analysis with most existing (K+1) methods lies in 

the fact that it focuses on the global components rather than on the partial components, as 

reflected by the adopted deflation procedure. We believe that the global components give more 

insight into the problem under study and give valuable tools both for the investigation of the 

relationships among datasets and the prediction [14]. The global components being orthogonal 

with each others, it is possible to depict overall graphical displays which highlight the 

relationships among all the variables, and to get an associated overall interpretation of 

similarities and differences between individuals. Moreover, the global component orthogonality 



Multiblock redundancy analysis from a user's perspective. Application in veterinary epidemiology 

206 

allows orthogonalised regression which takes into account all the explanatory variables and leads 

to the model in Equation (6). 
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)(ˆ hY  being the predicted values and Y

(h)
 the residual matrix of the model based on h components. 

As a remark, the weights (7) and the loadings (8) 
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are defined as in PLS framework [16]. From a practical point of view, the final model may be 

obtained by selecting the appropriate number h of components to be introduced in the model by a 

validation technique such as cross-validation [11]. Moreover, bootstrapping simulations are 

performed to provide standard deviations and tolerance intervals, associated with the regression 

coefficient matrix [4; 9]. 

 

2.3 Associated interpretation tools at the block level 

Multiblock methods are devoted to large datasets and lead to a high number of outcomes. 

Therefore, the user needs to get overall results. Firstly, he or she needs statistical indices to sort 

the explanatory variables by order of priority when the number of variables in Y is large. The 

Variable Importance for the Projection (VIP) proposed in the PLS framework [3; 18] is a 

relevant tool. It summarizes the overall contribution of each explanatory variable to the 

prediction of the Y block, summed over all components and weighted according to the amount of 

Y variance accounted for by each component. Associated standard deviations and tolerance 

intervals, computed using bootstrapped results, are also given. Additionally, it is of paramount 

relevance for the user to assess the contributions of the blocks (X1,…, XK) to the modelling task. 

The Block Importance in the Prediction, BIP is a relevant indice [12]. It is computed in the same 

vein as the VIP calculation, while using the weighted average values of the coefficients (a1
(h)2

, 

…, aK
(h)2

) which respectively reflect the link between Y and (X1, …, XK). An appealing feature is 

that these coefficients are included in the criterion to be maximized and are therefore directly 

derived from the maximization problem under consideration. Associated standard deviations and 

tolerance intervals, computed using bootstrapped samples, can also be given. 

 

2.4 Associated interpretation tools at the component level 

In effect, the user aims at achieving a synthesis of variables through components. As an example, 

the epidemiologist is not really interested in explaining each element of the disease (i.e. the Y 

block), but the disease, as a synthesis of these various elements. This can be achieved by linking 

their corresponding latent variables, u
(h)

 on the one hand and (t1
(h)

, …, tK
(h)

) on the other hand. 

We propose a model that directly highlights the link between u
(h)

 (i.e. the latent variable from the 

Y space) and t1
(h)

, …, tK
(h)

 (i.e. the latent variables from the explanatory blocks) for a given 
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dimension h. By regressing the latent variable u
(h)

 on the basis of the partial latent variables (t1
(h)

, 

…, tK
(h)

), we get the following model (9): 
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where )(h is the residual matrix of the model based on h components. The vector of coefficients 
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k vca  gives the direct link between the latent variables u
(h)

 and (t1
(h)

, …, tK
(h)

) for a 

given dimension h. The percentage of variance of Y explained by u
(h)

 is an additional interesting 

information. The main advantage of the proposed model in Equation (9) in comparison with the 

inner model available from PLS Path Modeling [15], is that the regression coefficients are not 

computed within an iterative algorithm, but are directly derived from the eigensolution. It 

follows that multiblock Redundancy Analysis may be a competitive alternative method to PLS 

Path Modelling in case of variables organized in (K+1) datasets. Associated standard deviations 

and tolerance intervals are provided from bootstrapped samples. 

 

2.5 Alternative methods 

It is worth mentioning that other methods are proposed in order to investigate the relationships 

among (K+1) datasets. Among all these techniques of analysis, we single out those methods 

which are based on a more or less similar maximization criterion than the one we have adopted 

herein. Some of these methods are proposed within the framework of generalized canonical 

analysis (e.g., Generalized Canonical Analysis with a Reference Table [5]), others are proposed 

within the context of PLS regression (e.g., multiblock PLS [13; 17]). Unlike Generalized 

Canonical Analysis with a Reference Table, we advocate using a deflation procedure which leads 

to orthogonal global latent variables. This enhances the outcome interpretation and improves the 

prediction. With regards to multiblock PLS, our method of analysis is more oriented towards the 

Y prediction but is likely to be less stable in case of multicollinearity within explanatory blocks. 

It is worth mentioning that multiblock Redundancy Analysis also bears high similarities to a 

method of analysis called Generalized Constrained Principal Component Analysis (GCPCA) [1]. 
Following the same notations as above, GCPCA is based on the maximization of the criterion 
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can show that the solutions of these two optimization problems are tightly linked. However, 

although we believe that further investigations are needed to compare more precisely mbRA and 

GCPCA, it is clear that the advantage of our strategy of analysis is to exhibit latent variables 

associated with the dependent dataset Y, namely u
(1)

, u
(2)

, etc. As shown in the case study, the 

latent variables are useful for quantifying the relationships between the explanatory blocks Xk 

and the block to be predicted Y. 
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3. Case study in veterinary epidemiology 
 

3.1 Multiblock data and objectives 

The dataset consists of a cohort of (N=351) broiler chicken flocks slaughtered in France. The aim 

is to assess the overall risk factors for losses in broiler chicken flocks (Y) described by four 

variables, i.e. the first-week mortality (Mort7), the on-farm mortality (Mort), the mortality during 

the transport to the slaughterhouse (Doa) and the condemnation rate at slaughterhouse 

(Condemn). For a complete description on the whole survey, the data collection and the 

exhaustive results refer to [6; 7]. Twenty three potential explanatory variables, organized in four 

meaningful blocks are selected: 5 variables pertain to the farm structure (X1), 5 are selected from 

the flock's characteristics and the on-farm history of chicks at placement (X2), 6 come from the 

flock's characteristics during the rearing period (X3) and 7 from the catching, transport, lairage 

conditions, slaughterhouse and inspection features (X4). Indicator (dummy) variables are 

considered for the categorical variables. As all the variables are expressed in different units, they 

are column centered and scaled to unit variance. We want to jointly assess the relative impact of 

the different production stages on the whole losses and the specific risk factors for each element 

of losses. 

 

3.2 Interpretation at the variable level 

The relationships between the 23 explanatory variables X and the 4 variables in Y are 

investigated using the graphical display in Figure 2, which depicts the loadings associated with 

the first three global components. 

It turns out that the risk factors for the overall losses are associated with positive values on the 

global component t
(1)

, whereas protective factors are associated with negative values. More 

precisely, the positive values on the component t
(2)

 are associated with high values of mortality 

during the transport to the slaughterhouse (Doa, Y), whereas negative values are associated with 

high values of early mortality (Mort7, Y). The positive values on the component t
(3)

 are 

associated with high values of condemnation rate at slaughterhouse (Condemn, Y), whereas 

negative values are associated with high values of on-farm mortality (Mort, Y). As an example, 

the mortality during the rearing period (Mort, Y) is in particular associated with the stress 

occurrence during rearing (Stress, X3), the locomotor disorder observed (Locpb, X3) and the 

genetic strain (Strain, X3), among others. 

In addition, a prediction model is set up by regressing the Y variables on the basis of the optimal 

number of components. This number is determined while using (mcv=500) cross-validated 

samples. It is a compromise which optimizes both the fitting and prediction abilities and leads to 

a model with (h=4) components. The regression coefficients and the associated tolerance 

intervals of the 23 explanatory variables are performed for each dependent variable, while using 

(mbt=500) bootstrapped samples. It appears that each element of losses is related with a specific 

set of risk and protective factors. As an example, Figure 3 shows the explanatory variables which 

are significantly associated with the first-week mortality (Mort7, Y). 
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Figure 2. Interpretation at the variable level - Plot of the variable loadings associated with the first three 

global components (t
(1)

, t
(2)

, t
(3)

). 

 

The antibiotic distribution during the starting period (βAntibio=-0.06 with a tolerance interval [-

0.12;-0.00]95%, X2), the heating system with gas heaters (βHeat=-0.12 [-0.19;-0.05]95%, X1) and 

above all the chick homogeneity at placement (βHomochick=-0.27 [-0.36;-0.17]95%, X2) are 

highlighted as significant protective factors. This means that particular care with respect to these 

variables should be taken in order to reduce the first-week mortality. The sorting practice of the 

animals (βSort=0.10 [0.02;0.18]95%, X1) appears to be more a consequence of the early mortality 

than a risk indicator. As a remark, the variable Dlairage, relative to a further stage associated 

with the lairage at slaughterhouse, is not interpreted. 
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Figure 3. Interpretation at the variable level - Regression coefficients of the X variables for one variable in Y 

(Mort7). Significant risk factors are highlighted in red and protective factors in green. 

 

3.3 Interpretation at the block level 

As a consequence of the large number of variable to explain, the user needs statistical indices to 

sort the explanatory variables by order of priority. Figure 4 gives the Variable Importance for the 

Projection of the most important explanatory variables on the whole losses Y (VIP>0.8). 

Standard deviations and tolerance intervals associated with each VIP coefficient are computed 

using the results from the (mbt=500) bootstrapped samples. 

Four explanatory variables have a significant impact on the whole losses (Y): the stress 

occurrence during rearing (VIPStress=1.63 [1.13;2.13]95%, X3), the homogeneity of chicks at 

placement (VIPHomochick=1.45 [0.97;1.93]95%, X2), the type of loading (VIPLoadType=1.37 

[0.89;1.84]95%, X4) and the withdrawal of carcasses at the evisceration line (VIPEvisc=1.19 

[0.80;1.58]95%, X4). The genetic strain has an important but not significant impact on losses 

(VIPStrain=1.26 [0.64;1.89]95%, X3). Each of these variables is especially related with one or two 

outcomes. In addition, Figure 5 gives the relative importance of each explanatory block Xk in the 

explanation of Y. 
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Figure 4. Interpretation at the block level - Variable Importance for the Projection (VIP) of the most 

important explanatory variables, associated with their 95% tolerance interval. 

 

 

 
Figure 5. Interpretation at the block level - Block Importance in the Prediction (BIP) of the explanatory 

blocks Xk in the Y explanation, associated with their 95% tolerance interval. 
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Two blocks have a significant influence on the whole losses (Y): the flock's characteristics and 

the on-farm history of chicks during the rearing period (BIPX3=1.26 [1.09;1.42]95%) and the 

catching, transport, lairage conditions, slaughterhouse and inspection features (BIPX4=1.06 

[0.93;1.19]95%). The two other blocks have an influence on Y (BIP>0.8) but it does not seem to 

be significant. 

 

3.4 Interpretation at the component level 

Finally, a model which directly reflects the links between u
(h)

 and (t1
(h)

, …, tK
(h)

) for a given 

dimension h, gives an overview of the multiblock analysis. Results in Figure 6 give a synthesis 

of the first two models (h=1, 2), directly derived from the eigensolution, between the synthesis of 

the losses (Y), i.e. the component u
(h)

, and the synthesis of the explanatory blocks (X1, …, XK), 

i.e. the components (t1
(h)

, …, tK
(h)

) respectively. 

 

 
Figure 6. Interpretation at the component level - Models between u

(h)
 and (t1

(h)
, …, tK

(h)
) for the first two 

dimensions h=(1, 2). 

 

The first component u
(1)

 explains 43% of the losses, is significantly related to all the partial 

components and is mainly linked to the flock's characteristics during the rearing period (βX3=8.0 

[5.8;10.3]95%). As an additional information, the component u
(1)

 is mainly linked to the on-farm 

mortality (Mort, Y) and the condemnation rate at slaughterhouse (Condemn, Y). The second 

component u
(2)

 explains 21% of the losses, is also significantly related to all the partial 

components and is mainly linked to the catching, transport, lairage conditions, slaughterhouse 
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and inspection features (βX4=5.4 [3.2;7.5]95%). Moreover, we can notice that the component u
(2)

 is 

mainly linked to the mortality rate during the transport to the slaughterhouse (Doa, Y). 

 

 

4. Conclusion 
 

Multiblock modelling handles the specificity of complex data and provides tools which can be 

helpful for the user to unveil hidden patterns and relationships among variables. For the purpose 

of exploring and modelling the relationships between one block of variables with several blocks 

of explanatory variables, we propose an extension of Redundancy Analysis, called multiblock 

Redundancy Analysis, as an alternative to multiblock PLS. The rationale behind this method is 

easy to understand because it is based on a global criterion to be maximized and, moreover, the 

solutions are directly derived from an eigenanalysis of a matrix. An appealing feature of the 

method lies in the introduction of global components on the one hand and partial components on 

the other hand, which highlight the relationships among the various datasets. Multiblock 

Redundancy Analysis is a relevant and useful tool to handle the specificity of complex data, as it 

enhances their interpretation and unveils new information for the user. As a general principle, it 

allows many possibilities of graphical displays and combines tools from factor analysis with 

tools pertaining to regression methods. Moreover, we propose some appropriate indices, related 

to the criterion to be maximized, which are therefore directly derived from the maximization 

problem under consideration. Multiblock Redundancy Analysis and associated interpretation 

tools are easy to grasp and implement. They are implemented using code programs developed in 

Matlab and are also made available in R. These code programs are available upon request from 

the first author. 
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