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Abstract: Under certain simplifying assumptions, zero-modified distribution of 

order k has been introduced and defined. In this paper, an attempt is made to 

study different zero-modified distributions of order k such as Binomial, Poisson, 

Geometric, Negative Binomial and logarithmic series. Also an inflated 

generalized Poisson distribution of order k has been defined and studied. Some of 

their properties also have been discussed. 
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1. Introduction 

 
Empirical distributions obtained in the course of experimental investigations often have an 

excess of zeroes compared with a Poisson distribution with the same mean. This has been a 

major motivating force behind the development of many distributions that have been used as 

models in applied statistics. The phenomenon can arise as the result of clustering ; distributions 

with clustering interpretations often do indeed exhibit the feature that the proportion of 

observations in the zero class in greater than xe , where x  is the observed mean. 

A very simple alternative to use of a cluster model is just to add an arbitrary proportion of 

zeroes, decreasing the remaining frequencies in the appropriate manner. Thus a combination of 

the original distribution with probability mass function (pmf) xP , 0,1,2,.....x together with the 

degenerate distribution with all probability concentrated at the origin, and gives a finite mixture 

distribution with: 
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A mixture of this kind is referred to as a zero-modified distribution or as a distribution with 

added zeroes. Another epithet is inflated distribution [14 & 17]. 

The probability function (pf) of the generalized Poisson distribution is defined for 0a , 1 

[Consul and Jain, 1973] as: 
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The probability function (pf) of a class of generalized Poisson distribution for 0, 1a  [13] 

is : 
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The probability generating function (pgf) of a class of generalized Poisson distribution [8] is: 
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This distribution attempt to take into account errors in recording a variable which in reality does 

have a generalized Poisson distribution. Suppose that the zero-class alone is misrecorded. Then 

the probability mass function is: 
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where 0 1w , i.e., there is over reporting. The distribution is known as the generalized Poisson 

with zeroes or the zero inflated generalized Poisson [12]. The Probability generating function is 

therefore: 

 
( 1)( ) (1 ) a tH u w w e    ;  where 

1t
t ue  
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Feller (1968) introduced the discrete distribution of order k, when he extended the notion of 

success to a success run of length k. A Run is usually defined as an uninterrupted sequence of 

like symbols (‘S’ or ‘F’). Thus the distributions associated with runs of k like outcomes are 

distribution of order k. 

The only explicit relationship between distributions of order k and that of order 1 is that “Every 

distribution of order 1 is the usual corresponding discrete distribution”. 

 

 

2. Zero-modified distributions of order k 
 

2.1 Zero-modified Binomial distribution of order k 
Hirano (1986) and Philippou and Makri (1986) gave exactly the probability function of Binomial 

distribution of order k, denoted by ( , )kB n p  as: 
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Some properties of the binomial distribution of order k was studied by Feller (1968), Hirano 

(1986), Philippou and Makri (1986) and Aki and Hirano (1988). Aki and Hirano (1989) gave the 

calculation of the probability function, the first and the second derivatives of the probability 

function with respect to the parameter which is necessary for getting the MLE based on 

independent observations. Putting 0x  in (1), we get: 
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So, a finite mixture of the distribution having the probability mass functions as: 
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is known as zero-modified binomial distribution of order k. 

 

2.2 Zero-modified Poisson distribution of order k 

Philippou (1983) introduced Poisson distribution of order k denoted by ( ; )kP x  with the 

probability function as: 
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where the summation is over all non-negative integers 1 2, ,..., kx x x  such that 

1 22 ... kx x kx x . He also showed that 
0

( ) 1
x

P X x  and studied some of its 

characteristics. Putting 0x  in (2), we have: 
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Now a finite mixture of the distribution having the probability mass functions as: 

 

0[ 0] ( ;0) (1 )

[ ] ( ; ) (1 ) ; 1,2,3,...

r k

r k

P X P w w I

P X x P x w I x

 

 

is known as zero-modified Poisson distribution of order k. 

 

2.3 Zero-modified Geometric distribution of order k 

Let k be a positive integer. Suppose we are given independent trials with success probability p. 

The distribution of the number of trials until the first occurrence of the k-th consecutive success 

is called the geometric distribution of order k and is denoted by ( )kG p . Philippou et al. (1983) 

called it the geometric distribution of order k and derived its exact probability function. Since 

then exact distribution theory for so called discrete distributions of order k has been extensively 

developed. They also showed that the mean of ( )kG p  is monotonously decreasing and hence 
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obtained the moment estimate which was determined uniquely. The probability function of 

( )kG p  is given by: 
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Putting x k  we get: 
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So, a finite mixture of the distribution having the probability mass functions as: 
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is known as zero-modified Geometric distribution of order k. 

 

2.4 Zero-modified Negative binomial distribution of order k 

The type I negative binomial distribution of order k is also called the type I waiting time 

distribution of order k . It is the waiting-time distribution for b runs of successes of length k, 

given non-overlapping counting, the pattern of the successes and failures that have occurred 

becomes irrelevant and counting begins all over again. This distribution is the b-fold convolution 

of geometric distribution of order k (Philippou, 1984) and therefore has the probability mass 

function: 
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Substituting x kr  in the above expression, we have: 

 

( , ; ) kr
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Therefore, a finite mixture of the distribution having the probability mass functions as: 
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2.5 Zero-modified logarithmic series distribution of order k 

A logarithmic series distribution of order k is obtained as a limiting form of a left-truncated type 

I negative binomial distribution of order k; the probability mass function can be expressed as: 
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Substituting 1x  in the above expression, we have: 
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Therefore, a finite mixture of the distribution having the probability mass function as: 

 

( ;1) 1k kLS p w w I  
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2.6 A class of Inflated Generalized Poisson distribution of order k 

Gupta et al. (2008) defined Generalized Poisson distribution of order k having the pf as: 
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and the pf of a class of generalized Poisson distribution of order k has the pmf: 
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Definition 1: The probability function of a class of Inflated Generalized Poisson distribution of 

order k has the following form: 
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where ( ; ; )K a s  is defined in (4) is a general form of a class of exponential sums of order k. If 

we put k =1 in this expression, we get a class of exponential sums [13]. 

The probability generating function of a class of Inflated Generalized Poisson distribution of 

order k is: 
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1 1

1 2

1

, ,..., 0

1

[ ]

( ; ; )

k k

i i

i i

k

i

kt x x s

i

i

k
x x x

i

e a t x

K at s t

x

      (7) 

 

Putting different values of ‘s’ in (5) and (6) we may obtain different forms of Inflated GPDs of 

order k and their probability generating functions. A few forms of Inflated GPDs of order k and 

their pgfs are given below: 

 

(i) Substituting 1s , the pf (5) reduces to the pf of Inflated or Zero-modified GPD I of order k: 
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where 
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and the probability generating function of Inflated GPD I of order k  is: 
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And accordingly the mean and variance are: 
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(ii) Assuming 2s  in (5), we can obtain the probability generating function of Inflated or 

Zero-modified GPD II of order k: 
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Therefore the probability generating function of Inflated GPD II of order k is: 
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and 3 2 4
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(iii) Considering 0s  in (5), we may obtain the probability function of Inflated GPD II of order 

k: 
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and the probability generating function of GPD II of order k is given by: 
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3. Discussion and Conclusions 
 

In this paper discussions have been made about some zero modified distributions of order k and 

also an Inflated Poisson distribution of order k has been studied along with some properties. 
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