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Abstract: After Tobin (1958), a considerable effort has been devoted to connecting the expected 
utility approach to a utility function directly expressed in terms of moments. We follow the 
alternative route of providing, for the first time, the theoretical, autonomous foundation of an 
ordinal utility function of moments, representing rational choices under uncertainty, free of any 
‘independence axiom’ and compatible with all the behavioral “paradoxes” documented in the 
economic literature. 
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1. Introduction 
In this paper we develop for the first time - to our knowledge – the foundation of an ordinal utility 
of moments (section 2) as a rational and autonomous criterion of choice under uncertainty, showing 
that it explains all the best known behavioral paradoxes which are still embarrassing the expected 
utility theory (section 3). This ordinal approach is strongly reminiscent of standard microeconomic 
theory and it could be used to reset and generalize both assets demand and asset pricing models.   
 
2. Foundations of an ordinal utility of moments for decisions under uncertainty 
It is well known that the theory of choice under uncertainty assumes that preferences are defined 
over the set of probability distribution functions (e.g. Savage, 1954 ch. 2 and DeGroot, 1970 ch. 7). 
In particular, let (Ω,ℑ,℘) be a standard probability space, Ω being the set of elementary events 
(states of the world), ℑ the set of subsets of Ω (events), ℘ a (subjective) probability measure of the 
events. Given the set A of all possible actions or decisions, all couples (ω,a) with ω∈Ω and a∈A, 
are mapped onto a real vector of monetary consequences c∈Rn, the Euclidean space of n-
dimensional real vectors, so that X(ω,a)=c or Xa(ω)=c is a random variable and Fa∈ℱ is its 
probability distribution function. Clearly, the preferences over acts in A are, equivalently, 
preferences over the set of random variables Xa and preferences over the set ℱ of distribution 
functions. Let us confine ourselves, for ease of exposition, to the case of univariate distributions 
(n=1) and assume that the essential information concerning any distribution F is contained in the m-
dimensional vector of moments  M≡(μ, μ(2), μ(3)

, ...., μ(m) ) where μ is the mean, and μ(s) is the s-
order central moment in original units1: 

Definition of s-order modified central moment: 
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1 Note that, instead of central moments, noncentral moments could, equivalently, be used. Moreover, scale, location and 
dispersion parameters can be considered in the case of distributions (e.g. stable) for which moments do not exist.   
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Note that (μ(s) )s is the usual central moment of order s≥2. 
Let Q⊆ Rm be a rectangular subset of Rm (the Cartesian product of m real intervals), whose 
elements are the m-dimensional vectors of moments, M∈Q. Following to Fishburn (1970) we show 
the existence of an ordinal utility of moments and define its properties. 
Assumption of preference order: Let  be a preference order i.e. a binary relation defined by a 
subset ℜ of the Cartesian product QxQ, whose elements are the ordered pairs of vectors (Ma,Mb). 
We write Ma Mb instead of (Ma,Mb) ∈ℜ and we say that “Ma is preferred to Mb”, corresponding 
to “Fa is preferred to Fb”. 
Clearly, or Ma Mb or Ma / Mb and both cannot hold: in fact, or (Ma,Mb) ∈ℜ or (Ma,Mb) ∉ℜ. 
I. Axiom of asymmetric preferences: We assume that is asymmetric i.e. that: 
 if  Ma Mb then Mb / Ma        (2.2) 
Note that if  Mb / Ma then two alternative cases are possible: either Ma Mb or Ma / Mb.  
In the latter case we say that “Ma and Mb are equivalent” and we write Ma ∼ Mb. 
Definition of equivalence: Ma ∼ Mb iff Ma / Mb and  Mb / Ma 
Theorem of complete preferences: Given Ma , Mb ∈Q then one and only one case holds: 
Ma Mb or Mb Ma or Ma ∼ Mb. 
Proof: It is easy to show that any two cases are a contradiction. ■ 
II. Axiom of  transitive preferences: We assume that is transitive: 
if  Ma Mb and  Mb Mc then Ma  Mc      (2.3) 
Definition of weak order: The preference order is a weak order if it is asymmetric and transitive. 
Definition of negatively transitive preferences: if  Ma / Mb and  Mb / Mc then Ma /  Mc. 
Lemma: is negatively transitive if and only if, for every  Ma, Mb, Mc∈Q, Ma Mb implies 
Ma Mc or Mc Mb. 
Proof: Under negative transitivity, if Ma Mb but Ma / Mc and Mc / Mb then by negative transitivity 
Ma / Mb against the assumption. 
Viceversa, if  Ma Mb implies Ma Mc or Mc Mb and negative transitivity is false we have 
Ma / Mb , Mb / Mc but Ma Mc. Therefore Ma Mb or Mb Mc against the assumption. ■ 
Theorem of negatively transitive preferences: Asymmetric and transitive preferences are 
equivalent to asymmetric and negatively transitive. Moreover, the equivalence ∼ is reflexive, 
symmetric and transitive and   on Q|∼ (the set of equivalence classes of Q under ∼) is a strict order 
in the sense that for every equivalent class MA, MB ∈Q|∼ one and only one case holds: MA MB or 
MB MA. 
Proof: Under transitivity if  Ma Mb and  Mb Mc then Ma  Mc; therefore, by asymmetry, if 
Mb / Ma and  Mc / Mb then Mc /  Ma which is negative transitivity. 
Viceversa, under negative transitivity, if Ma Mb and Mb Mc then, from previous Lemma, 
(Ma Mc or Mc Mb) and (Mb Ma or Ma Mc). But Mc Mb and Mb Ma are false by asymmetry. 
Therefore Ma Mc which means transitivity. 
The equivalence is clearly reflexive and symmetric. Suppose it is not transitive: Ma∼Mb and  
Mb∼Mc but Ma ∼ Mc is false. Then, by definition, either Ma Mc or Mc Ma. From the Lemma, in 
the first case, Ma Mb or Mb Mc; in the second case Mc Mb or Mb Ma, in contradiction with the 
hypothesis. 
For the proof of strict order of  on Q|∼ see Fishburn (1970, p. 13). ■ 
III. Axiom of continuity: There is a countable subset D ⊆  Q|∼ that is -dense in Q|∼ i.e. for every 
MA, MC ∈Q|∼\D, MA MC there is MB ∈D such that: 
MA MB and MB MC       (2.4) 
Note that the subset of rational numbers is >-dense and <-dense in the set of real numbers.  
Theorem of ordinal utility on moments: Under Axioms I, II, III there is a real function 
 H: Q  R which represents the preferences , i.e. such that for every Ma, Mb ∈Q  
Ma Mb if and only if  H(Ma) > H(Mb) 
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The function H is unique up to any order-preserving transformation Ψ: 
H(Ma) > H(Mb) if and only if  Ψ(H(Ma)) > Ψ(H(Mb)). 
Proof: Fishburn (1970, p.27). ■  
 
3. Indifferent pricing and the (dis)solution of paradoxes 
The utility of moments is perfectly compatible with the empirical observations in all well known 
behavioral paradoxes, described in terms of games and lotteries.    
In order to show this compatibility we use the so called utility indifferent pricing (Henderson and 
Hosbon, 2004) which can be applied in all cases of personal valuation of non traded assets and 
incomplete markets. 
For the sake of simplicity, let us consider the two-moment ordinal utility. 
Let W be current wealth of the decision maker and G~ be the random variable representing the game, 
with mean MG and vol ΣG. Future wealth, in case of a decision to gamble, is given by: 

G~
P

PW
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0

G +
−

=         (3.3) 

where W-PG is wealth left after payment for the game, invested at the riskless rate 1
P
1r
0
−=  (often 

set to zero) and the personal indifferent price PG is defined as the price at which the agent is 
indifferent between paying the price and entering the game and paying nothing and avoiding the 
game: 
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In the l.h.s., using a Taylor series approximation for small risks (Pratt, 1964) we have: 
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so that, imposing (4.4) and simplifying, we obtain: 
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where the term in brackets is the (negative) personal price of the vol Pσ . Therefore, the reservation 
price of the game is obtained as moment quantities, M, Σ, times subjective moment prices, P0 , Pσ. 
Moreover, equation (3.6) can be easily generalized to higher moments (skewness Γ and kurtosis Ψ): 
 

κςσ Ψ+Γ+Σ+= PPPPMP GGG0GG       (3.7) 
and it will be used in the following to show that the behavior of a utility of moment maximizer is 
perfectly compatible with all proposed paradoxes, from St. Petersburg (1713) to Allais (1953, 
1979), Ellsberg (1961) and Kahneman and Tversky (1979, 1981). 
 
3.4 The Kahneman and Tversky (1979) paradox. In a famous experiment, a systematic violation 
of the independence axiom was documented: 80% of 95 respondents preferred A to B where: 
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and more than 50% of respondents violated the independent axiom, given that, if Q pays 0 for sure, 
then2: 
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and B’’ is considered equal to B’ in terms of outcomes and probabilities. 
The point is that, in terms of valuation, B’ and B’’ are not the same asset, and B’’ is equivalent to: 
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Using the first four moments: 
 
 A’ B B’ 
mean, μ 750 3200 800 
standard deviation, σ 1299.04 1600 1600 
skewness, ς 1362.84 -1831.54 1831.54 
kurtosis, κ 1605.52 2148.28 2148.28 
 
and assuming the following prices of the four moments: 
P0=1, Pσ=-0.2, Pς=0.1, Pκ=-0.001 we obtain the prices of the lotteries: P(A)=3000 > P(B)=2694.70 
and P(A’)=624.87 < P(B’)=661.01, in accordance with the experimental results. Note also that 
P(B’’)=561.28<P(A’)<P(B’). 
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