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Abstract: The objective of this paper is to develop a GME formulation for the class of spatial structural 
equations models (S-SEM) into a panel data framework. In this respect, two innovatory aspects are 
introduced: (i) the formalization of the GME estimation approach of SEM to allow for spatial heterogeneity 
and spatial dependence (spatially sampled data); (ii) the extension of the methodology panel data. 
 
1. Introduction 
The focus of this paper is on Structural Equation Models (SEM) approach to spatial models. Panel 
data are considered by assuming that the spatial interaction across spatial units comes from the 
effect of an endogenous lag process. 
A Generalized Maximum Entropy (GME) estimation approach for the Spatial SEM here introduced 
has been suggested as a suitable solution to endogeneity and collinearity problems implied by the 
presence of spatial dependence. This model offers a very flexible tool for modeling multivariate 
spatial data and answering research questions about latent factors underlying spatial samples data.  
The paper is organized as follows. In section 2, we present the basic notation and the S-SEM model 
specification for panel data. Section 3 illustrates the proposed GME formulation. An application 
focused on the analysis of regional unemployment rates in Europe is presented in section 4.  
 
2. Spatial Structural Equations Model (S-SEM) framework 
 
2.1 Basic S-SEM specification for panel data 
 
The Structural Equation Model  (Bollen, 1989, Duncan, 1975, Jöreskog, 1973) is defined by two 
main parts: the first part  - the Structural Model -refers to the relationships among the latent 
variables [1], while the second part - the Measurement Model - represents the relationships between 
manifest and latent, endogenous [2] and exogenous [3] variables, respectively. We introduce a 
general model specification for the SEM, where m endogenous and l exogenous latent variables are 
specified by the vectors η and ξ, while x and y, denote the vectors of the r and q manifest 
endogenous and exogenous variables, respectively. 
The Β matrix specifies the structural relationships among the endogenous latent variables while Γ is 
a matrix of coefficients of the exogenous latent variables on the endogenous ones.   
The coefficient matrices Λy and Λx measure the relationships between the manifest and latent 
endogenous and exogenous variables, respectively.  
The vectors of errors τ, ε and δ, are the structural and the measurement errors vectors, respectively. 
The matrix Φ represents the co-variance between the latent variables ξ, while Ψ is that one between 
the error term τ. Finally, Θε and Θδ, are the measurement error covariance matrices between the 
error terms ε and δ, respectively. 
 

,1( ) , ( ) ,1( ) , ( ) ,1( ) ,1( )m t m m t m t m l t l t m t= ⋅ + ⋅ +η β η Γ ξ ζ         [1] 

,1( ) , ( ) ,1( ) ,1( )
y

r t r m t m t r t= ⋅ +y Δ η ε           [2] 
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,1( ) , ( ) ,1( ) ,1( )
x

q t q l t l t q t= ⋅ +x Δ ξ δ           [3] 
 
Moreover the basic model specification has some assumptions: The variables are centered, E(η)= 
E(ξ)= E(τ)= 0; E(y)= E(ε)= 0; E(x)= E(δ)= 0; The independent variables and the error terms are un-
correlated, E(ξ τ’)= 0; E(η ε’)=0; E(ξ δ’)= 0; E(η δ’)= 0; E(ξ ε’)= 0; The error terms are un-
correlated, E(τ ε’)= 0; E(τ δ’)= 0; E(ε δ’)= 0; The matrix B is not singular 
Since we are considering a panel of N units within T periods, the model we introduce refers to (N·T) 
independent replications (observations) typically originated from a sample of randomly drawn 
subjects. The model reports the classic SEM notation (Jöreskog, 1973) with the addition of the 
index t relative to the T time periods and indicating that the manifest variables are referred to a N·T 
by 1 vector of observations, N observations for the Countries and T for time periods.  
 
2.2 Introduction of spatial unobserved heterogeneity and spatial dependence among spatial units: 
Panel data from individual observations give us the advantage of introducing fixed effects in the 
measurement model to allow of spatial unobserved heterogeneity among spatial units (N locations) 
(Bernardini Papalia, 2006). In this respect we proceed by including an individual specific “dummy 
variable” to capture unobserved heterogeneity for each unit i (i=1….N). 
For the spatial dependence, we focus on one of the widely used approach (a so-called spatial LAG 
model) where the spatial correlation pertains to the dependent variable.  
In this context, it is assumed interdependence of latent exogenous variables across areas. This 
assumption may be formalized by including a set of exogenous spatial lag variables into the 
measurement model which represent the relationship between the manifest and latent exogenous 
variables. In doing this, a spatial weights matrix W of non-stochastic time constant weights has to 
be specified. This is a (N×N) matrix in which the rows and columns correspond to the cross-
sectional observations.  
An element wij of the matrix expresses the prior strength of the interaction between location i (in the 
row of the matrix) and location j (column). This can be interpreted as the presence and strength of a 
link between nodes (observations) in a network representation that matches the spatial weights 
structure. In most application, the choice is driven by geographic criteria, such as contiguity 
(sharing a common border) or distance, including nearest neighbor distance (Anselin 1988; Lesage 
and Pace 2004). 
More specifically, using the stacked equation [3], the set of latent exogenous variables ξ is enlarged 
to include: (i) Spatial Lag variables [4], that is the first-order contiguity spatially lagged dependent 
variable, here considered as exogenous and so defined with X instead of Y; (ii) The fixed effects that 
are country and year dummies as reported in equations [5] and [6], respectively; (iii) and the set of q 
exogenous variables XNT,1. 
 

, , ,1( )T T N N NTSpatial Lag− = ⊗ ⋅I W x          [4] 

, ,1( )T T NDummy Times− = ⊗I 1          [5] 

, ,1( )N N TDummy Space− = ⊗I 1          [6] 
 
The equation [3] can be reformulated considering also the spatial lag variable and both the fixed 
effects, obtaining: 
 

*
, 1 , , , ,1 , ,1 , ,1| ( ) | ( ) | ( )NT q N T NT q T T N N NT N N T T T N+ + + ⎡ ⎤= ⊗ ⋅ ⊗ ⊗⎣ ⎦X X I W x I 1 I 1     [7] 

 
Then, the associated Λx matrix which specifies the regression coefficients of the observed variables 
on the latent exogenous variables, is defined as Λx= [ρ | α | τ], including: the spatial autoregressive 
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parameter (ρ), the vector of fixed effects, relative to time and spatial effects defined as α=[αt | αs], 
and the set of coefficients relative to the exogenous variables (τ). 
 
In the estimation of a S-SEM, it is then essential to deal with the problem of endogeneity of the 
spatial lag term given by the correlation between latent endogenous and exogenous variables and as 
a consequence the correlation between exogenous observed variables and errors. Our proposal here 
is to introduce a GME formulation which produces consistent parameter estimates in presence of 
collinearity and endogeneity of some explanatory variables. 
 
3. The GME formulation 
The objective here is to recover the unknown parameters of the fixed effects spatial panel SEM as 
specified in the previous section, with minimal distributional assumptions. In this respect and also 
with the aim of deal with the problems due to the endogeneity of the spatial lag and fixed effects 
components, it is suggest a Generalized Maximum Entropy (GME) estimation approach (Golan, 
1996). Following the Information-theoretic GME idea based on the (Shannon, 1948) entropy 
principle, since the entropy function is defined on proper probability distributions, we first proceed 
by reformulating all parameters and noise components of the model [1-3] as set of proper 
probabilities (P indicates a probability distribution for parameters and G a probability distribution 
for errors) defined on some support spaces (Z support space for parameters and V support space for 
random errors).  
 
3.1 Basic GME: Specification of SEM 
The GME approach for the SEM considers the Re- Parameterization of the unknown parameters 
and the disturbance terms, as a convex combination of expected value of a discrete random 
variable. The coefficient matrices, Β, Γ, Λy, Λx, and the co-variance matrices, Φ, Ψ, Θε, Θδ, are all 
Re-Parameterized as expected values of discrete random variable with M fixed points for the 
coefficients and J for the errors. The Re-Parameterized coefficients, reported without the index t 
relative to the T time periods, are so defined: ( , ) ( , ) ( , )m m m m M m M m

Β
⋅ ⋅= ⋅B Z P ; ( , ) ( , ) ( , )m l m l M l M l

Γ
⋅ ⋅= ⋅Γ Z P ; 

( , ) ( , ) ( , )

yy
r m r m M m M m

Λ
⋅ ⋅= ⋅Λ Z P ; ( , ) ( , ) ( , )

xx
q l q l M l M l

Λ
⋅ ⋅= ⋅Λ Z P ; ( ,1) ( , ) ( ,1)m m j J j J

ζ
⋅ ⋅= ⋅ζ V G ; ( ,1) ( , ) ( ,1)r r j J j J

ε
⋅ ⋅= ⋅ε V G ; 

( ,1) ( , ) ( ,1)q q j J j J
δ

⋅ ⋅= ⋅δ V G . 
 
The S-SEM model [1-7] can be re-formulated in a unique formulae in function of the re-
parameterized coefficients: 
 

( ) ( ) ( )

( )( ) ( ) ( ){ } ( )

1

1

, , , , , ,
y x y

x

ζ ε δ

δ ζ ε

ψ
−

Β Γ Λ Λ Λ Β

−
Γ Λ

⎡ ⎤= = ⋅ ⋅ − ⋅ ⋅⎣ ⎦

⎡ ⎤⋅ ⋅ − ⋅ + ⋅ + ⋅⎣ ⎦

Y P P P P G G G Z P I Z P

Z P Z P X V G V G V G
     [8] 

 
Given the re-parameterization and the re-formulation, the GME system can be expressed as a 
constrained non-linear programming problem. The coefficients and the error terms are estimated by 
recovering the probability distribution of the discrete random variables set. The vectors pB=vec(PB), 
pΓ=vec(PΓ), pΛy=vec(PΛy), pΛx=vec(PΛx), are obtained by using the vec operator of the matrices PB, 
PΓ, PΛy, PΛx. The vectors: pB, pΓ, pΛy, pΛx, Gζ, Gε, Gδ, are calculated by the maximization of the 
following entropy function: 

' ' ' ' ' ' '

( , , , , , , )

ln ln ln ln ln ln ln

y x

y y x x

H ζ ε δ

ζ ζ ε ε δ δ

Β Γ Λ Λ

Β Β Γ Γ Λ Λ Λ Λ

=

− ⋅ − ⋅ − ⋅ − ⋅ − ⋅ − ⋅ − ⋅

p p p p G G G

p p p p p p p p G G G G G G
  [9] 
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subjected to the consistency and normalization constraints (the sum of each coefficients and the 
error terms probability vector have to be equal to 1). 
 
4. The Case Study 
In order to show the S-SEM application to a real data set, an analysis aiming at investigating the 
significance of spatial effects for regional unemployment disparities in OECD is presented. The 
data, relative to a panel of OECD countries over the period 1998-2006, refer to the main macro 
economy variables relevant in explaining unemployment differences across local labour markets 
such as: the Gross Domestic Product, the Inflation rate, the Wages, the Innovation, the Human 
Capital. The effects of the labour and market deregulation variables on the unemployment rates is 
also analyzed. Finally, the role of these variables is relied on static and dynamic specifications for 
regional unemployment rates. 
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