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Abstract: This paper is concerned with research on early-failure monitoring systems for safety of 
railway systems. The work presented here have led to the development of ideas and techniques for 
the employment of time series modelling and control charting for on-line temperature monitoring of 
railcar brakes. A software package implementing the real-time monitoring scheme is presented. The 
temperature signal is sampled and the readings are filtered using a time-series model. In 
particular, a seasonal ARIMA model is exploited. The filtered signal, which has well defined 
statistical properties, is then plotted against proper control limits. The motivation of the research is 
the need for improved reliability of equipment and quality of service to metro passengers. 
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1. Introduction 
A fault is defined as an undesired state that may lead to a malfunction or failure of a system. 
Generally, a fault is identified by signalling an unpermitted departure of one or more characteristic 
property of a variable from an acceptable behaviour. 
For the enhancement of safety and reliability, advanced methods of supervision become 
increasingly important for many technical processes and systems. Supervisory methods serve to 
signal undesired or not permitted process states, and eventually to take appropriate actions in order 
to maintain the operation and to avoid damage or accidents. Supervision methods are especially 
important in the case of safety related to transportation systems like aircraft, trains, automobiles, as 
well as for production processes as power plants and chemical plants. 
A general survey of supervisory methods is given by Isermann (2005). In the case of a dangerous 
process state, three main supervisory methods can be distinguished: 1) Monitoring (measurable 
variables are checked and alarms are generated for the operator). 2) Automatic protection (an 
appropriate counteraction is automatically initiated). 3) Fault diagnosis (based on measured 
variables, a fault diagnosis is performed and decisions for counteractions are generated for the 
operator). 
Regardless of the specific purpose of the supervisory method, the detection of faults in the 
processes is obtained by modelling the dependencies between different measurable signals. These 
dependencies are expressed by mathematical and statistical models. As a matter of fact, measured 
signals of real process typically show oscillations that are of stochastic nature. If changes in these 
signals can be related to faults in the process, a supervisory method can be developed by using 
Statistical Process Control (SPC) techniques. 
This paper presents the application of a SPC method that uses time-series filters and control 
charting for on-line condition monitoring of railway equipment. In particular, a statistical 
monitoring system of car brakes temperature, which can provide advanced warning to train operator 
of an overheated bearing condition, is discussed. The motivation for this research is the need for 
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improved reliability of equipment and quality of service to metro passengers. The temperature 
signal is sampled one time in about two minutes and the readings are filtered using a time-series 
model. The filtered signal, which has well defined statistical properties, is then plotted against 
proper control limits. 
 
2. Literature review 
One of the major techniques of SPC is the control chart. In its basics form, a control chart compares 
process observations (or a function of such observations) to a pair of control limits. A fundamental 
assumption for the development of a control chart is that process observations are independently 
distributed. However, readings sampled over time from a physical variable (such as brakes 
temperature) exhibit, in general, autocorrelation. In such cases, control methods, which allow for 
violations of the independence assumption, must be used. Several approaches were presented in the 
literature. Three general charting techniques can be identified to handle autocorrelation. 

• The first technique is to use time series models to fit the data, and then apply standard 
control charts. 

• The second technique consists in apply control charts with adjusted control limits, which 
account for the correlation structure of the data. 

• The third technique consists in monitoring specialized statistics of the original observations. 
 
The first technique was proposed by Alwan and Roberts (1988), which presented the use of time 
series modelling to detect special causes of variation by using the special-cause control (SCC) chart. 
The SCC chart is the traditional Shewhart’s chart of the residuals. The basic idea of the SCC chart 
is that if the natural cause of the process variation can be modelled by a time series model, then the 
residuals of the fitted model will explain the special cause to the process, if any. 
In the second category of charting techniques for autocorrelated processes, Wardell et al. (1994) 
suggested that k-sigma limits on a standard Shewhart’s control chart could be used, with proper 
values of k. Zhang (1997) used simulation to find out the best choice of k for certain time series 
models so as to make the in-control performance as close as possible to that of a standard 
Shewhart’s chart. For small autocorrelation, the properties of this chart do not differ greatly from 
the properties of a Shewhart’s chart applied to independent data. 
In the third category of charting techniques for autocorrelated processes, the Exponential Weighed 
Moving Average (EWMA) statistic applied on the original autocorrelated observations have been 
frequently recommended. More recently, Zhang (1998) developed a chart for using a EWMA 
statistic to monitor a stationary (ST) process: the EWMAST chart. Such a chart is superior to the 
SCC and Shewhart charts when the process autocorrelation is not very strong and the mean change 
is not large. 
From a performance perspective, Wardell et al. (1994) applied the three techniques, i.e. SCC, 
EWMA and Shewhart’s control charts, for monitoring autocorrelated processes in a special case of 
time series model (the first order autoregressive first order moving average – ARMA(1,1) – model). 
By comparing the performance of the SCC chart, in signalling out-of-control behaviours of the 
monitored process, to that of the Shewhart chart and EWMA chart, they concluded there is no a 
unique best chart to use for every type of autocorrelated process. 
 
2. The method implemented 
In this paper, a time series model is exploited to fit data. The technique consists of filtering out 
autocorrelation by an autoregressive integrated moving average (ARIMA) model, following the 
techniques of Box et al. (1994). Then, if the time series model is accurate enough, the residuals (i.e., 
the prediction errors) are statistically uncorrelated to each other, and a standard Shewhart’s control 
chart (the so-called SCC chart) can be applied to them (Alwan and Roberts 1988). 
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The ARIMA model of parameters ( ), ,p d q  is described in following equation (1). 
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where the difference operator ∇  is defined as follows. 
 

( )2
1t t t t tz z z z z−∇ ≡ − ∇ ≡ ∇ ∇ "          (2) 

 
and the backward shift operator B  is defined by (3). 
 

( )2
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tz  is the original reading collected at time t , tw  is the respective differentiated signal, and tε  is the 

residual. 
In the reference test case, it has been observed that brakes temperature data show seasonal periodic 
patterns. These patterns can be modelled by creating ARIMA models for the seasonal variation as 
well as for the individual samples. 
The composite model is known as a Seasonal ARIMA model of parameters ( ) ( ), , , ,

s
p d q P D Q× , 

where p  is the number of significant autocorrelations, d  is the number of differentiations, q  is the 
number of significant moving average terms within each season, and , ,P D Q  are the 
autocorrelations, differentiations and moving average terms, taken across seasons of duration s . 
The complete Seasonal ARIMA ( ) ( ), , , ,

s
p d q P D Q×  model is expressed by equation (4): 
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A model can be obtained from the collected data when the process is in control. Once a model has 
been developed, it can be used to forecast (or predict) each new value. The difference between the 
forecast value and the actual value is the forecasting error, or residual. 
In summary, the real-time SPC scheme takes temperature sensor data that are auto-correlated and 
then feeds them into an appropriate time-series filter Seasonal ARIMA ( ) ( ), , , ,

s
p d q P D Q×  

produce independent and identically distributed residuals. A control chart is then applied on the 
residual sequence. 
 
3. Application to real-time process data 
The monitoring system takes as input the data of railroad brakes temperature. In this work, process 
data were simulated. Then, it feeds process data into an appropriate time-series filter. 
The Seasonal ARIMA ( ) ( ) ( ) ( )16

, , , , 2, 2,0 3, 2, 4
s

p d q P D Q× = ×  was selected for this application. 
Indeed, this model produced independent, identically and normally distributed residuals for 
temperature data of railroad brakes: ( )20,t NIDε σ∼ . 
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The statistical software MINITAB® was exploited in order to: 1) estimate model parameters, 2) 
check the adequacy of the model and 3) estimate the variance of the residuals. Eventually, a SCC 
chart was designed on the residuals. 
A software package was then developed to implement the real-time monitoring scheme. It includes 
four modules: 1) data manipulation, 2) Seasonal ARIMA filtering, 3) control charting and graphical 
display, and 4) alarm generation. These operations were implemented in MATLAB®. 
Following Figure 1 illustrates the graphical output of the software package implemented in 
MATLAB®. From left to right, each panel of Figure 1 represents respectively: 1) the time series 
plot of actual temperature data, 2) Fitted Value Chart (FVC), i.e., a graph of the actual time series 
along with the fitted values, 3) SCC chart, i.e., the Shewhart’s control chart of residual errors 
between actual data and predicted values. The SCC consists also of a central line and of upper and 
lower control limits. 
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Figure 1: Output plots produced by MATLAB®. From left to right panels: the actual temperatures, 

the FVC, the SCC chart with central line and control limits (upper and lower) 
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