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Abstract: A study was conducted to assess the influence of soil properties and underlying geology on 
the characteristics of Falanghina wine grape in a viticultural area of southern Italy. Soil, along with climate, 
is one of the main physical-environmental factors affecting the composition of wine grape. Soil properties 
reflect to a more o less extent the characteristics of underlying geology, depending on the nature of geologi-
cal substrate and the age of soil. Therefore, if relationships can be found between soil properties and grape 
characteristics, an indirect influence of geological substrate on grape composition should be expected. The 
structure of geology-soil-grape data is then characterized by a chain of dependence relationships between 
the three sets of variables. As such, it can evaluated using a single theoretical approach based on the metric 
generalization of PLS regression. 
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1. Introduction 
 
There is a widespread agreement that wine grape characteristics result from the combined effects of 
a number of factors, such as genetic, anthropogenic and physical-environmental. While anthropo-
genic and genetic factors can be modified, the physical-environmental factors are substantially sta-
ble and poorly adjustable, so that they represent crucial features, determining the specificity and dis-
tinctiveness of the wine made from grape juice fermentation.  

The influence of physical-environmental factors on grape characteristics has enjoyed research 
attention. Many wine scientists, particularly from New World countries emphasised the central im-
portance of climate on wine grape production, relegating the role of soil as secondary to climate. 
Conversely, the majority of scientists from European countries (especially from France) associated 
grape quality with the type of soil from which the grapes are produced. Against the above contro-
versy, a need exists to improve knowledge on the effects of climate and soil on grape and wine 
quality. To contribute to this need, a research activity has recently been undertaken by the CNR-
ISAFoM in the Telesina Valley, an important viticultural area of southern Italy. As a first step in 
this research, the influence of basic soil properties on the Falanghina wine grape quality was inves-
tigated (Leone et al., 2006). Falanghina (from which a namesake wine is produced) is one of the 
most celebrated wine grape cultivar of the study area, and, more generally, of the southern Italy. 

Soil properties may be significantly affected by the underlying geology, depending on the na-
ture of geological substrate from which soils originate and the age of soil (i.e., the time of soil for-
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mation). Therefore, if relationships can be found between soil properties and grape characteristics, 
an indirect influence of geological substrate on these characteristics should be expected. The struc-
ture of geology-soil-grape data is, then, characterized by a chain of dependence relationships be-
tween three sets of variables: the grape characteristics are influenced by the soil properties, which, 
in turn, are affected by nature of geological substrate. 

This kind of problem can be statistically tackled in a “two-stages least squares” (TSLS) 
framework. If we are not in the presence of quasi collinearity among variables or in situations 
where the number of variables is large enough with respect to the number of samples, then a TSLS 
regression can be performed. TSLS regression refers to a first stage in which new dependent vari-
ables are created to substitute for the original ones regressing soil properties onto the geological 
substrate. A second stage is then performed, in which the grape characteristics are regressed onto 
the newly created variables. Following the same strategy, a two-stage PLS regression can be 
suggested to overcome the quasi collinearity conditions among variables or when the number of 
variables is large with respect to that of samples. However, we should remark that in both cases the 
newly created variables are computed without taking into account the grape characteristics and not 
in a single theoretical approach. The main objective of this paper is to evaluate the dependence 
chain relationships between geology, soil and grape characteristics in the Telesina Valley within a 
single theoretical approach without considering a two-stage strategy. 

 
2. Notation and structure of the data 
 

Let  be a matrix of order 1= { , , }T
nX x x… n p×  collecting the values taken by  statistical 

units on 
n

p  explanatory variables. We consider the notation of the statistical study (triplet) 
 (Escoufier, 1987) to describe the data and their use. The triplet allows to present the 

factorial methods in a single theoretical framework by using suitable choices for the metrics  
and , where  specifies the weights metric in the vectorial space 

( , , )XX Q D

XQ
D 1= ( ,..., )ndiag d dD nℜ  of 

variables with  (herafter ) and  defines the metric measuring the distance 

between the data vectors ,  of two statistical units j, k in 
=1

= 1n
ii

d∑ = 1/id n XQ

jx kx pℜ  given by . 

We assume that  is mean centred with respect to D ( =  with  unitary column vector). 
Moreover, let  and (  be two statistical studies associated with the matrices  
and  of order  and , respectively, collecting additional sets of  and k criterion 
variables observed on the same  statistical units.  and  are the  and  metrics 
of the statistical units in 

( ) ( )T
j k j k− −Xx x Q x x

X T
n1 DX 0 n1

( )YY,Q ,D )ZZ,Q ,D Y
Z (n q× ) )

) )
(n r× q

n YQ ZQ (q q× (r r×
qℜ  and , respectively. Finally, we highlight that the set rℜ 1= { , , }qY y y…  

plays the  role of explanatory or criterion variables with respect to the sets of variables collected in 
 and , respectively, such that to be the ring of the chain of the dependence relationships 

between  and X . 
Z X

Z
 

3. Few words on the Generalized Partial Least Squares 
  
We recall the PLS definitions according to Tenenhaus (1998), which have been generalized 

by Cazes (1997) (GPLS). The PLS regression of  with respect to  uses two 
statistical studies (triplets) observed on the same statistical units and weighted by D . The PLS 
regression is an iterative method maximizing the objective function  with 

constraints on the axes . At each step  this objective function is maximized by 

replacing  and , respectively, with the residual matrices 

( , , )YY Q D ( , , )XX Q D

cov( , )Y XQXYQ c w

= 12 2=Q QY X
c w s

Y X ( 1)s−Y  and  obtained by the -( 1)s−X D
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orthogonal projections of Y  and X  onto the subspace spanned by the 1s −  PLS components of  
of inferior order 

X
( 1)( = ; = 1, , ( 1))k

k k s− −X kt X Q … Xw . At step , we have  and . 
The axis 

= 1s (0) =X (0) =Y Y

sw , associated with , is given by the eigenvector corresponding to the highest 
eigenvalue 

X
2λ  of  and the objective function maximum equals to ( 1) ( 1) ( 1) ( 1)s T s s T s− − − −

YX DY Q Y DX QX

λ . By permuting  and  (  and ) into previous equation, it is possible to compute the axis X Y XQ YQ

sc . Alternatively, axis sc  can be obtained by the transition formula ( 1) ( 1)= (1/ ) s T s
s sλ − −

Xc Y DX Q w  
with an analogous formula to pass from sc  to sw .  
 
4. The method 

  
In order to evaluate the dependence chain relationships between geology, soil and grape 

characteristics within a single theoretical approach, we propose to consider the Cazes‘s generalized 
PLS method with a suitable choice of the metrics, taking into account the relationships between the 
sets of variables. We call this approach “B-Crossed PLS Regression”. In this context, as the set 

1= { , , }qY y y…  plays the role of ring of the chain of the dependence relationships between  and 
, we can directly study the influence of the geological substrate ( ) onto the grape characteris-

tics ( ) by using the metric  as  where the matrix B , of order (

Z
X X

Z TBB XQ )p pq× , is given by 
 

  (1) 
(1)

( )

0

0

T

T
p

⎛ ⎞
⎜ ⎟

= ⎜
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b
B

b

% ⎟

1
q

 

with 1 1
( ) 1( ) [( ) ,..., ( ) ]T T T T T T T

j j j j j j j j j j
− − −= =b x x x Y x x x y x x x y  vector of the simple regression coeffi-

cients of each response ly  ( 1,..., )j q=  on each explanatory variable  jx ( 1,..., )j p= . It is evident 

that each vector  provides information on the dependence relationships between  and . If 
the column variables of  are also standardized ( ) then each above quantity is given by the 

scalar products of  with each 

( )
T

jb Y X
X jx�

jx� ly  ( , that is 1,..., )l = q q( ) 1[ ,..., ]T T T T
j j j j= =b x Y x y x y� � � .  

In literature several authors proposed suitable uses of the matrix  within multidimensional 
data approaches. For instance, Garthwaite (1994) shows that the univariate PLS latent variables  
can be obtained as the weighthed averages of the simple regressions of response variable 

B
kt

y  on each 

explanatory variable , that is jx 1
1
( ) ( ) ( )

j

p T T T T
k j j j j j j jj

−
=

∝ =∑ xt x x x x x y x x P y  where  is the or-

thogonal projection operator onto the subspace spanned by . If  matrix is also standardized 

then the PLS latent variable  amounts to the simple average of the p vectors  and it can be 

expressed as 

jxP

jx X

kt T
j jx x y� �

ˆT
k p∝ =t XX y Y1� �  with ˆ =Y XB�  and where  is a diagonal matrix with diagonal ele-

ments equal to { . An analogous approach was also proposed for multivariate PLS by the above 
author. Merola and Abraham (2000) suggested an alternative method to PLS called “Principal 
Components of Simple Least Squares” in which the latent variables  are solutions of the general-

ized principal components problem 

B

}T
jx y�

kt

' '

2ˆ ˆmin
T
k k kk

T
l k

δ=
−

t t
Y t t Y  with ˆ =Y XB�  of order  according to 

(1). This approach amounts to a weighted principal component analysis of the explanatory variables 
using the coefficients of determination of the simple regressions as weights. The latent variables  

(n pq× )

kt
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are then the weighted principal components of  and the coefficients are given by X�
T T λ=BB X Xw w� � . Finally, D’Ambra et al. (2005) proposed a strategy (Crossed regression ap-

proach) to investigate the dependence structure between X  and G  sets of response variables  
 of order 

gY
( 1,..., )g = G ( )gn q×  observed on the same n satistical units. The Crossed regression ap-

proach is performed using the  (q J×�
1

G
gg

q
=

= q∑� ) simple linear regressions of each generic j-th 

column of the g-th matrix  against each . In this way  matrices  are obtained, 

where  is a diagonal matrix with the weighted regression coefficients 

gY jx q� g
g XBY =ˆ

gB ( )
g

jb  according to (1). The 
authors perform then a Multiple Co-Inertia Analysis (Chessel and Hanafi, 1996) of the  matrices 

 in order to analyze the common structure. It is evident that all the authors correspond then a 
vector of  “weights”  to each explanatory variable 

q�
gŶ

( )
T

jb jx  collected in the matrix B , in order to take 
into account the dependence relationships between both sets of variables. So it could be interesting 
to study the influence of the explanatory variables  onto the response variables Z  by weighting 
the former with the relationships with the ring variables . This last set of variables will enter in 
the PLS analysis by the matrix of weights B .  

X
Y

B-Crossed PLS Regression (B-C-PLSR) is then defined as the PLS analysis of the triplets 
 and {  where  is defined according to (1). It is easy to show that the B-C 

PLSR axis 
{ , , }kZ I D , , }TX BB D B

sw  of order s maximizes the criteria 2 ( ) ( )

,
max co , )

s s

s T sv ( s sw c
X BB w Z c  with the constraints 

2 1Ts =
BB

w , 2 1s =c . The B-C-PLSR solution of order  is then given by the vector s
1/2= ( )T

s s
−w BB w�  where the eigenvector sw�  is linked to the higher eigenvalue λ  of the eigen-

system 1/2 ( 1) ( 1) 1/2( ) ( ) =T s T T s T
s sλ− −BB X DZZ DX BB w w� �  with ( )= s T

s st X BB w .  
Finally, we highlight that the B-Crossed PLS Regression is also equivalent to the PLS 

analysis of the triplets {  and  with , , }kZ I D ˆ{ , , }pqY I D ˆ =Y XB , which allows a graphical represen-
tation of all set of variables. In this case, the B-C-PLSR solution of order  is given by  s

1/2 T T
s sλ−=w B X DZc  where sc  is the eigenvector linked to the higher eigenvalue λ  of the eigen-

system ˆ ˆ =T T
s sλZ DYY DZc c . For this B-C-PLSR, it would be better to use this last eigen-system 

instead of ( 1) ( 1) =T s T T s
s sλ− −B X DZZ DX Bw w  cause of the lower computational complexity of the 

former. 
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